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ABSTRACT

The demand for 3D content has increased over the last years as
3D displays are now widespread. View synthesis methods, such as
depth-image-based-rendering, provide an efficient tool in3D con-
tent creation or transmission, and are integrated in codingsolutions
for multiview video content such as 3D-HEVC. In this paper, we
propose a view synthesis method that takes advantage of temporal
and inter-view correlations in multiview video sequences.We use
warped motion vector fields computed in reference views to obtain
temporal predictions of a frame in a synthesized view and blend them
with depth-image-based-rendering synthesis. Our method is shown
to bring gains of 0.42dB in average when tested on several multiview
sequences.

Index Terms— view synthesis, multiview video, depth-image-
based-rendering

1. INTRODUCTION

Technology advances in the past years have turned 3D contentdis-
play into an expected functionality in high end television sets. Some
of the common usage scenarios of 3D content involve Free view
Point Television (FTV) [1], immersive teleconference systems, med-
ical and entertainment applications [2].

3D videos are available in several formats. Some of the
more commonly used ones include stereo video, MultiView Video
(MVV), which is comprised of multiple video recordings of the same
scene, acquired from different points of view, and Multiview-Video-
plus-Depth (MVD) [3], where each texture sequence is accompanied
by its corresponding depth information. This later format is of high
interest as depth maps provide a less costly way of creating addi-
tional virtual sequences for new points of view. This process is
known as view synthesis. In general view synthesis methods can be
divided in three categories [4]. The first type of methods requires
implicit geometry information usually given in the form of depth
maps, which are then used to compute pixel disparity betweenthe
original and synthesized views in order to perform a warpingof the
original view. These methods are known as Depth-Image-Based-
Rendering (DIBR) [5]. Another type of methods requires only
implicit geometry, for example pixel correspondences thatcan be
computed using optical flow [6] [7] between two views. Finally, in
the last type of methods no geometry information is required. In this
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case, interpolation and filtering is used to obtain the synthesis (e.g.:
lumigraph [8], concentric mosaics [9]).

Because of MVD’s format ability to support multiview applica-
tions, the Moving Picture Experts Group (MPEG) developed anex-
perimental framework for this format during the standardization pro-
cess of a 3D extension of the High Effciency Video Coding standard
(HEVC) [10]. This framework also defined a View Synthesis Refer-
ence Software as part of the 3D-HEVC test model (3D-HTM) [11],
which uses DIBR for the creation of virtual views.

When changing the point of view, some areas in the original
video sequence, that were hidden, become visible and createholes
or disocclusions in the synthesized view. This issue is usually re-
solved using inpainting algorithms [12] [13] [14]. Other methods
use temporal correlations in a video sequence to extract information
about the disoccluded areas [15] or extract the background of the
scene [16] [17].

In our previous work [18], we used reversed motion vector fields
warped in the synthesized view using an epipolar constraint[19], in
order to extract information on disoccluded areas. This is combined
with a sub pixel precision warping technique that uses an additional
filtering step for background-foreground separation and pixel inter-
polation. In this paper, we use temporal correlations to obtain addi-
tional temporal predictions of the synthesized frame. Morespecif-
ically, we use forward motion vectors in the temporal sense,com-
puted in the reference views and warped in the synthesized view to
obtain up to four temporal predictions which are blended together
with the DIBR predictions using either an average or adaptive ap-
proach.

The rest of this paper is organized as follows. In Section 2, we
present the epipolar constraint. Sections 3 and 4 show how weob-
tained the predictions and the final synthesized frame. Experimental
results are reported in Section 5 and Section 6 concludes thepaper.

2. EPIPOLAR CONSTRAINT

The most widely spread view synthesis algorithms warp the texture
of a given frame using the associated depth map (DIBR algorithms).
However, when dealing with video sequences additional information
can be utilized from the reference views such as motion information.
The challenge is to appropriately utilize the correlationsin the syn-
thesized view. In our previous work [18], we used this information
to reduce the size of the disoccluded areas in the synthesized frame.
Here, our objective is to address the entire frame.

A first step in achieving this goal, is to obtain usable MotionVec-
tor Fields (MVFs) at the level of the synthesized view. Previously,
we used reversed motion vector fields in order to obtain different dis-
occlusions when warping from multiple time instants. In this paper
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the interest is rather to have high accuracy. Indeed, the disocclusions
can be addressed after the process using any inpainting algorithm.
We will compute forward MVFs in the reference view (r). More
specifically, for a frameF at time instantt, we will compute two
MVF using two reference frames at a future (Ft+

) and past (Ft−)
time instant.

Fst- Fst

FrtFrt-

k=(x,y)
vr(k)

vs(k+dt(k))

x
y
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Synthesis

dt-(k+vr(k)) dt(k)

Fig. 1. Relation between projections of a real world point in two
frames of the reference and synthesized views att− andt time in-
stants.

The motion vectors in the reference view need to be adjusted
to be usable in the synthesized view. In order to warp the MVFs
at the level of the synthesized view, we impose a so-called epipolar
constraint [19] on a pointk = (x, y) in Ft. The ideea is that the
projection of a real world point in different views at multiple time
instants can be modeled using the disparity and motion information.

In Fig. 1, we show the relation between multiple projectionsof a
real world point. Let us consider a reference view (r), a synthesized
view (s) and two time instantst− andt. vr andvs are the dense mo-
tion vector fields in the reference and synthesized views, respectively
anddt

−

, dt are the disparity fields computed from depth informa-
tion. If we consider the projection of a real world pointk in frame
F r

t at position(x, y), we can determine the position of the projec-
tions in other frames relative tok. InF s

t andF r

t
−

the projections can
be found atk+ dt(k) andk+ vr(k), respectively. We can express
the epipolar constraint in this case as:

dt(k) + vs(k+ dt(k)) = vr(k) + dt
−

(k+ vr(k)) (1)

Using Eq. 1 we can derive the dense motion vector field in the syn-
thesized view as:

vs(k+ dt(k)) = vr(k) + dt
−

(k+ vr(k))− dt(k) (2)

This can be interpreted as a motion compensation operation for
dt

−

with vr followed by an adjustment of the motion intensity with
the difference betweendt

−

anddt and a warping of the motion
vector field withdt.

Note that when using this formulation of the epipolar constraint
we obtain the MVF for all positionsm ∈ M whereM = {k +
dt(k) | k ∈ F r

t }. As a consequence, our MVF in the synthesized
view (vs) will have holes matching the disoccluded areas in a DIBR
warping. Therefore, using this MVF to motion compensate will re-
sult in the same holes as the DIBR synthesis.

3. TEMPORAL AND VIEW PREDICTION

In general, the view synthesis is performed from 2 referencese-
quences if possible, a left and a right one with respect to thesyn-

thesized view position. This is preferred over using a single refer-
ence view due to the reduction of disoccluded areas, especially the
removal of border disocclusions [20]. As discussed in Section 2, we
can use a past and a future reference frame for the MVF computation
in the reference views. Thus, we can obtain up to four temporal pre-
dictions for each pixel, from a past or future reference frame using
the left or the right available views.
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Fig. 2. Scheme for two reference views using past and future time
instants (t−, t+). Green: MVF warping step; red: the motion com-
pensation step.

In Fig. 2, we show the general scheme of the proposed method.
Considering a left (lr) and a right (rr) reference view, with their
associated depth maps, we aim at synthesizing a middle view.With
green we represent the MVF warping and the required inputs: the
MVFs in the reference views for a past (t−) and future (t+) time
instant (vlr

t
−

, vlr

t+
, vrr

t
−

, vrr

t+
) and the six disparity fields (dlr

t
−

, dlr

t ,

dlr

t+
,drr

t
−

,drr

t ,drr

t+
). The motion vector fields can be obtained using

any motion estimation technique. The disparity fields are computed
from the associated depth information. Assuming we are dealing
with a 1D parallel camera setup, the disparity maps only haveanx
component, which is easily computed from the correspondingdepth
maps of each base view [2] as:

d(k) = f ·B

[
Z(k)

255

(
1

Zmin

−
1

Zmax

)
+

1

Zmax

]
(3)

whereZ is the inversed depth,Zmin andZmax are the minimum
and maximum depth values respectively,f is the focal length of the
camera, andB is the baseline, the distance between the reference
view and the synthesized one.

With red in Fig. 2, we show the motion compensation step in
which four predictions of the current frame are obtained using the
four MVFs. The red and green scheme can then be iterated through
all the frames of the synthesized view.

The final steps in order to obtain the synthesized image are the
blending of the temporal predictions and the inpainting of remaining
holes. Note that during the blending step, the two DIBR predictions
(from left and right) can also be taken into account. This aspect is
discussed in the following section.

4. VIEW SYNTHESIS

As discussed in Section 3 we obtain four temporal and two DIBR
predictions of a frame. A first solution to obtain the synthesized
frame is to combine these predictions in a similar manner as VSRS-
1DFast, by computing the average or median of the values for each
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Table 1. Average PSNR for all methods and sequences at each QP.

Sequence
VSRS-1DFast

PSNR (dB)
Wf

PSNR (dB)
P+Bavg

PSNR (dB)
P+Badapt

PSNR (dB)
QPs 25 30 35 40 25 30 35 40 25 30 35 40 25 30 35 40

Balloons 34.37 34.07 33.43 32.4134.39 34.14 33.52 32.5134.72 34.44 33.78 32.7334.74 34.45 33.8 32.72
Kendo 34.98 34.51 33.77 32.7535.37 34.9 34.15 33.0834.86 34.42 33.75 32.7935.37 34.87 34.13 33.06
NewspaperCC 29.2 29.05 28.78 28.3129.81 29.69 29.39 28.8329.91 29.8 29.5 28.9529.85 29.74 29.44 28.9
PoznanHall2 36.24 35.87 35.36 34.5536.35 36.02 35.51 34.7736.44 36.11 35.7 34.8836.49 36.2 35.7 34.86
Average 33.70 33.37 32.83 32 33.98 33.69 33.14 32.333.98 33.69 33.18 32.3434.11 33.82 33.27 32.38
∆PSNR - - - - 0.28 0.32 0.31 0.3 0.28 0.32 0.35 0.34 0.41 0.45 0.44 0.38

pixel. This works well for sequences that have low intensitymo-
tion and provide good results as can be seen in Section 5. However,
when dealing with high intensity motion, the temporal predictions
can contain artifacts due to the motion estimation failures. In this
situation, we should use only the DIBR predictions which areinvari-
ant with respect to the motion intensity, depending on the quality
of the depth maps. The challenge here is to determine when to use
DIBR prediction. Because there is no prior information about the
texture, the accuracy of the six available predictions, four temporal
and two DIBR, cannot be determined. However, we can reasonably
assume that the motion estimation artifacts may vary at different time
instants, which implies that four temporal predictions with matching
values (very close values) probably indicate a good result of the mo-
tion estimation. The same reasoning can be applied for DIBR:two
matching values predicted with DIBR indicate most likely a good
prediction. Thus, we are interested in using the DIBR predictions
when they have similar values and the temporal predictions are rela-
tively different from each other and DIBR.

In order to better formulate this problem, let us consider four
temporal (̂it1, ît2, ît3, ît4) predictions, two DIBR (̂iD1 < îD2 ) predic-
tions and the vectorspt = [̂i1, î

t

2, î
t

3, î
t

4] andpD = [̂iD1 , îD2 ]. When
the temporal predictions are very close to the DIBR predictions or
contained in the interval[̂iD1 , îD2 ] there are no reliable assumptions
that can be made about the accuracy of each prediction type. There-
fore, we should use the average or median of the six predictions
([pt,pD]). However, when some or all of the temporal predictions
are outside of this interval and there is a relatively high difference
between the two prediction types, we should use only the DIBRpre-
dictions. Based on this situations we can formulate the selection
process as follows:

î =






mean(pD) if mean(| [pt,pD]−mean([pt,pD]) |) >

mean(| pD −mean(pD) |)

mean([pt,pD]) otherwise
(4)

For empirical reasons we decided to use the average over the median
in the blending process as it provides slightly better results. The se-
lection method described above is designed to replace the temporal
predictions with DIBR when motion estimation errors occur.Be-
cause the reference frames used for motion compensation arealso
synthesized, there are situations when this selection process may fail
and provide slightly worse results on some frames. However,as can
be seen in the experiments section, this blending will correct mo-
tion estimation errors in sequences with high intensity motion, while
maintaining similar results for the others.

5. EXPERIMENTAL RESULTS

We test our method using the test model designed for 3D-HEVC
(3D-HTM 7.0). Details can be found in the Common Test Condi-
tions (CTCs) for conducting experiments with the referencesoftware
of 3D-HEVC [21]. The video sequences used in our tests are: Bal-
loons, Kendo, NewspaperCC and PoznanHall2. The first three se-
quences have a resolution of1024× 768 with 30 frames per second
while PoznanHall2 has a resolution of1920 × 1088 with 25 frames
per second, additional details can be found in [22]. We use the full
sequences for our tests (300 frames for the first three sequences and
200 for the later). The left and right reference views used inthe
synthesis are1&5 for the first two sequences,2&6 and5&7 for the
NewspaperCC and PoznanHall2. The synthesized views are3, 3,
4 and6, respectively. We test the synthesis using different quality
encoding for the reference texture and depth sequences. Each se-
quence is encoded using four QPs: 25 30 35 40, for the texture and
corresponding QPs for the depth maps: 34 39 42 45, as indicated by
the CTCs. The reference synthesis we compare against is performed
with VSRS-1DFast [11], which is included in 3D-HTM.

For comparison purpose, we also include the results of the sub-
pixel precision warping technique with adaptive filtering presented
in [18]. For fairness of comparison, all methods use the samehole
filling technique as that of VSRS-1DFast (a line-wise interpolation).
We test our method using two different blending options, first an av-
eraging of the predictions (avg) and second the blending described
in Section 4. As shown in Section 3, each frame in the synthe-
sized view is motion compensated from a past and future reference
frame. While the past reference frame is available, the future ref-
erence frame needs to be synthesized only from DIBR predictions
before the motion compensation step. The MVFs are computed us-
ing an optical flow implementation for motion estimation [23] and
the motion compensation is performed with sub-pixel precision. The
parameters used and additional details about the optical flow method
can be found in [24].

For each sequence and each QP, we synthesize the intermedi-
ate views using the reference software (VSRS-1DFast), the warp-
ing with adaptive filtering method (Wf) in [18], our proposed
method with average blending (P+Bavg) and the adaptive blend-
ing (P+Badapt). We evaluate the PSNR of each synthesis using
the original uncompressed sequences. Additional SSIM results and
an extensive distortion analysis of the tested methods is available
in [25].

Tab. 1 shows the average PSNR for the reference methods and
ours. We can see that our method provides a better synthesis.How-
ever, on Kendo sequence the averaging of predictions does not pro-
vide good results due to high intensity motion. This issue isresolved
by the adaptive blending and the quality of the synthesis is highly
increased compared to the averaging blend. The last rows show the
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Fig. 3. PSNR variation of the synthesized view over time for the reference and proposed methods at QP 25 in Balloons 3(a), Kendo 3(b),
NewspaperCC 3(c) and Poznan Hall2 3(d) sequences.

(a) Balloons

(b) NewspaperCC

Fig. 4. Details in Balloons 4(a) and NewspaperCC 4(b) sequences onframe 38. From left to right: original uncompressed, VSRS-1DFast,
Wf, P+Badapt. Red squares show artifacts in the synthesis.

average and∆PSNR values of Wf, P+Bavg and P+Badapt over the
VSRS-1DFast reference. We can see that all methods provide again
over VSRS-1DFast (0.42dB in average, with P-Badapt), whileour
proposed methods manage to outperform Wf (0.1dB in average). It
can be noticed that the gain depends on the sequence. These aspects
are further discussed at the end of this section. In Fig. 3, weshow
the PSNR variation over time for the four test sequences. Forbrevity
reasons, we only show the QP 25 results as the behavior is similar
across QPs. Black, green, red and blue colors indicate the meth-
ods VSRS-1DFast, Wf, P+Bavg and P+Badapt. We can see that our
proposed methods outperform VSRS-1DFast by 0.65dB and Wf by
0.37dB at most, on NewspaperCC and Balloons sequences respec-
tively. Fig. 4 shows some details of the synthesis with the tested
methods. From left to right we show the original uncompressed, the
VSRS-1DFast, Wf and P+Badapt. Red squares mark areas contain-
ing artifacts. In 4(a) we can see artifacts around the contours of the
balloons and in 4(b) around the edge of the head. It is noticeable that
in the images on the right these artifacts are diminished.

As can be seen in our experiments, the P+Bavg method provides
a better quality synthesis when compared to VSRS-1DFast andWf

on most test sequences. However, this method uses temporal corre-
lations in a video sequence and is dependent on the quality ofthe
motion estimation technique used. While it is able to obtaina very
good gain on Balloons sequence it falls behind on Kendo sequence
due to motion estimation failure caused by high intensity motion.
This problem is corrected using the adaptive blending presented in
Section 4. In Fig. 3(a) and 3(b) we can see some drops in quality on
some frames with P+Bavg which are corrected by P+Badapt.

6. CONCLUSION

In this paper we presented an improved synthesis method thatuses
the temporal correlations in the reference views in order toobtain
temporal predictions of the synthesized frame from two different
time instants. The temporal predictions are blended with the DIBR
predictions using either an averaging or an adaptive blending method
designed to reduce the impact of motion estimation errors. The
method was tested using the 3D-HEVC test model and compared
with VSRS-1DFast synthesis and a sub pixel precision warping tech-
nique. Our method brings gains of 0.42dB and 0.1dB in average.
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