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ABSTRACT

The demand for 3D content has increased over the last years
3D displays are now widespread. View synthesis method$, asic
depth-image-based-rendering, provide an efficient to@Dncon-
tent creation or transmission, and are integrated in coslhgtions
for multiview video content such as 3D-HEVC. In this papeg w
propose a view synthesis method that takes advantage obtamp
and inter-view correlations in multiview video sequenc&¥e use
warped motion vector fields computed in reference views tainb
temporal predictions of a frame in a synthesized view anddieem
with depth-image-based-rendering synthesis. Our methatiown
to bring gains of 0.42dB in average when tested on severaiview
sequences.

Index Terms— view synthesis, multiview video, depth-image-
based-rendering

1. INTRODUCTION

Technology advances in the past years have turned 3D catitent
play into an expected functionality in high end televisietss Some

case, interpolation and filtering is used to obtain the s3sith(e.g.:
lumigraph [8], concentric mosaics [9]).

85 Because of MVD's format ability to support multiview apglic
tions, the Moving Picture Experts Group (MPEG) develope@an
perimental framework for this format during the standaaticm pro-
cess of a 3D extension of the High Effciency Video Coding déad
(HEVC) [10]. This framework also defined a View Synthesisdref
ence Software as part of the 3D-HEVC test model (3D-HTM) [11]
which uses DIBR for the creation of virtual views.

When changing the point of view, some areas in the original
video sequence, that were hidden, become visible and dneéts
or disocclusions in the synthesized view. This issue is liysver
solved using inpainting algorithms [12] [13] [14]. Other theds
use temporal correlations in a video sequence to extramtrivgtion
about the disoccluded areas [15] or extract the backgrodinbeo
scene [16] [17].

In our previous work [18], we used reversed motion vectod§el
warped in the synthesized view using an epipolar constfaéjt in
order to extract information on disoccluded areas. Thi®mfned
with a sub pixel precision warping technique that uses aitiadel
filtering step for background-foreground separation anxélpnter-

of the common usage scenarios of 3D content involve Free viegolation. In this paper, we use temporal correlations taiobaddi-

Point Television (FTV) [1], immersive teleconference syss, med-
ical and entertainment applications [2].

3D videos are available in several formats.
more commonly used ones include stereo video, MultiViewedid
(MVV), which is comprised of multiple video recordings otthame
scene, acquired from different points of view, and Multivi¥ideo-
plus-Depth (MVD) [3], where each texture sequence is aceomeg
by its corresponding depth information. This later fornsabf high
interest as depth maps provide a less costly way of creatidg a
tional virtual sequences for new points of view. This preces
known as view synthesis. In general view synthesis methadde
divided in three categories [4]. The first type of methodsunexs
implicit geometry information usually given in the form oépth
maps, which are then used to compute pixel disparity betwieen
original and synthesized views in order to perform a warghthe

tional temporal predictions of the synthesized frame. Mgpecif-
ically, we use forward motion vectors in the temporal secse-

Some of thdPuted in the reference views and warped in the synthesized td

obtain up to four temporal predictions which are blended:togr
with the DIBR predictions using either an average or adepgip-
proach.

The rest of this paper is organized as follows. In Sectione, w
present the epipolar constraint. Sections 3 and 4 show hoabwe
tained the predictions and the final synthesized frame. fixpatal
results are reported in Section 5 and Section 6 concludgsaiber.

2. EPIPOLAR CONSTRAINT

The most widely spread view synthesis algorithms warp thieite
of a given frame using the associated depth map (DIBR alyusj.

original view. These methods are known as Depth-Imagedase However, when dealing with video sequences additionatinéion

Rendering (DIBR) [5].
implicit geometry, for example pixel correspondences ttaat be
computed using optical flow [6] [7] between two views. Figalh
the last type of methods no geometry information is requihedhis

fPart of this work was supported under ESF InnoRESEARCH POS

DRU/159/1.5/S/132395 (2014-2015).

*Part of this work was supported under CSOSG, ANR-13-SECQBO0
SUrveillance de Reseaux et d'InfrastruCtures par des mgstéeroporTes
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Another type of methods requires only can be utilized from the reference views such as motion inégion.

The challenge is to appropriately utilize the correlationthe syn-
thesized view. In our previous work [18], we used this infation
to reduce the size of the disoccluded areas in the synttiBemme.
Here, our objective is to address the entire frame.

Afirst step in achieving this goal, is to obtain usable Mottt-
tor Fields (MVFs) at the level of the synthesized view. Poesgly,
we used reversed motion vector fields in order to obtainmiffedis-
occlusions when warping from multiple time instants. Irsthaper
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the interest is rather to have high accuracy. Indeed, tloedissions  thesized view position. This is preferred over using a singfer-

can be addressed after the process using any inpaintingtalgo  ence view due to the reduction of disoccluded areas, edlyeitia

We will compute forward MVFs in the reference view)( More removal of border disocclusions [20]. As discussed in $adi, we

specifically, for a frameF” at time instantt, we will compute two  can use a past and a future reference frame for the MVF cotiputa

MVF using two reference frames at a futut€, () and past £z-) in the reference views. Thus, we can obtain up to four tenipoea

time instant. dictions for each pixel, from a past or future reference #aming
the left or the right available views.

Reference X
re— | Vr(k) yi k=(x,y) time instant
\ s
— Left Reference Fr Frr Fir Fr Fir
F* Fr e -
=t t
d, (k+v,(k)) d,(k)
Synthesis| Syn\t/};:::]zed
| V(ktd(k))

—Y

vk |
F. P, Sl 1 N O

views

Fig. 1. Relation between projections of a real world point in two
frames of the reference and synthesized views_aand¢ time in-
stants.

Fig. 2. Scheme for two reference views using past and future time
instants {_, ¢t;). Green: MVF warping step; red: the motion com-
pensation step.

The motion vectors in the reference view need to be adjusted
to be usable in the synthesized view. In order to warp the MVFs  In Fig. 2, we show the general scheme of the proposed method.
at the level of the synthesized view, we impose a so-callqbtgy ~ Considering a leftif) and a right £r) reference view, with their
constraint [19] on a poirk = (z,y) in F;. The ideea is that the associated depth maps, we aim at synthesizing a middle Viéth.
projection of a real world point in different views at muléptime ~ green we represent the MVF warping and the required inpts: t
instants can be modeled using the disparity and motionrimition. ~ MVFs in the reference views for a pagt.{ and future {;) time

In Fig. 1, we show the relation between multiple projectioha  instant ¢;" , vi", vi”, v{7) and the six disparity fieldsd" , d;",
real world point. Let us consider a reference view & synthesized dii ,di”, d;", di}). The motion vector fields can be obtained using
view (s) and two time instants_ andt. v, andv, are the dense mo- any motion estimation technique. The disparity fields aramated
tion vector fields in the reference and synthesized vievepgetively  from the associated depth information. Assuming we areimtgal
andd;_, d; are the disparity fields computed from depth informa-with a 1D parallel camera setup, the disparity maps only laane
tion. If we consider the projection of a real world pokiin frame  component, which is easily computed from the correspondegh
F{ at position(z, y), we can determine the position of the projec- maps of each base view [2] as:
tions in other frames relative ta. In ;¥ andF;" the projections can
be found ak + d.(k) andk + v..(k), respectively. We can express Z (k) 1 1 1
the epipolar constraint in this case as: dk)=75-B [ 255 (Z N me) + A } ®)

di(k) + vs(k +de(k)) = vi(k) +de_(k+ve(k)) (1) \herez is the inversed deptiZmin and Zpmq. are the minimum
Using Eq. 1 we can derive the dense motion vector field in the sy and maximum depth values respectivefyis the focal length of the

thesized view as: camera, and3 is the baseline, the distance between the reference
view and the synthesized one.
vs(k+di(k)) = vr(k) +de_(k+vr(k)) —di(k) (2) With red in Fig. 2, we show the motion compensation step in

which four predictions of the current frame are obtainechgithe
four MVFs. The red and green scheme can then be iteratedgihrou
all the frames of the synthesized view.

The final steps in order to obtain the synthesized image a&re th
blending of the temporal predictions and the inpaintingeofhaining
holes. Note that during the blending step, the two DIBR ptéalis
CI(from left and right) can also be taken into account. Thiseass
discussed in the following section.

This can be interpreted as a motion compensation operation f
d._ with v, followed by an adjustment of the motion intensity with
the difference betweed,_ andd; and a warping of the motion
vector field withd,.

Note that when using this formulation of the epipolar ccaistr
we obtain the MVF for all positions. € M whereM = {k +
d;(k) | k € F/'}. As a consequence, our MVF in the synthesize
view (v,) will have holes matching the disoccluded areas in a DIBR
warping. Therefore, using this MVF to motion compensate reH
sultin the same holes as the DIBR synthesis. 4. VIEW SYNTHESIS

3. TEMPORAL AND VIEW PREDICTION As discussed in Section 3 we obtain four temporal and two DIBR
predictions of a frame. A first solution to obtain the synthed
In general, the view synthesis is performed from 2 referesme frame is to combine these predictions in a similar mannerSR$-
quences if possible, a left and a right one with respect tosyime  1DFast, by computing the average or median of the valuesaft e

1151



Table 1. Average PSNR for all methods and sequences at each QP.

Sequence VSRS-1DFast Wf P+Bavg P+Badapt

PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)
QPs 25 30 35 40 | 25 30 35 40| 25 30 35 40 [ 25 30 35 40
Balloons 34.37 34.07 33.43 32.4134.39 34.14 33.52 32.5134.72 34.44 33.78 32.1B4.74 34.45 33.8 32.72
Kendo 34.98 34.51 33.77 32.185.37 34.9 34.15 33.0834.86 34.42 33.75 32.71985.37 34.87 34.13 33.06
NewspaperC¢ 29.2 29.05 28.78 28.3129.81 29.69 29.39 28.§29.91 29.8 29.5 28.9529.85 29.74 29.44 28.9
PoznanHall2 | 36.24 35.87 35.36 34.586.35 36.02 35.51 34.7136.44 36.11 35.7 34.886.49 36.2 35.7 34.86
Average 33.70 33.37 32.83 32|33.98 33.69 33.14 32.333.98 33.69 33.18 32.384.11 33.82 33.27 32.38
APSNR - - - - 028 0.32 031 0.3/028 032 035 034041 045 044 0.38

pixel. This works well for sequences that have low intensity- 5. EXPERIMENTAL RESULTS

tion and provide good results as can be seen in Section 5. \owe
when dealing with high intensity motion, the temporal potidns  We test our method using the test model designed for 3D-HEVC
can contain artifacts due to the motion estimation failuresthis  (3D-HTM 7.0). Details can be found in the Common Test Condi-
situation, we should use only the DIBR predictions whichiavari- tions (CTCs) for conducting experiments with the referesafevare
ant with respect to the motion intensity, depending on theligu ~ of 3D-HEVC [21]. The video sequences used in our tests aré: Ba
of the depth maps. The challenge here is to determine wheseto uloons, Kendo, NewspaperCC and PoznanHall2. The first tteee s
DIBR prediction. Because there is no prior information ahifie ~ quences have a resolution 1§24 x 768 with 30 frames per second
texture, the accuracy of the six available predictionsy femporal ~ while PoznanHall2 has a resolution 20 x 1088 with 25 frames
and two DIBR, cannot be determined. However, we can rea$pnabper second, additional details can be found in [22]. We usdtt
assume that the motion estimation artifacts may vary atwifft time  sequences for our tests (300 frames for the first three segsemd
instants, which implies that four temporal predictionshwitatching 200 for the later). The left and right reference views usethi
values (very close values) probably indicate a good re$titeomo-  synthesis aré&>5 for the first two sequence8&6 and5&7 for the
tion estimation. The same reasoning can be applied for Dt8B: NewspaperCC and PoznanHall2. The synthesized views,a8e
matching values predicted with DIBR indicate most likely@d 4 and6, respectively. We test the synthesis using different tyali
prediction. Thus, we are interested in using the DIBR ptagtis  encoding for the reference texture and depth sequencesh deac
when they have similar values and the temporal predictionseda-  quence is encoded using four QPs: 25 30 35 40, for the textate a
tively different from each other and DIBR. corresponding QPs for the depth maps: 34 39 42 45, as indibgte
the CTCs. The reference synthesis we compare against o pexd
In order to better formulate this problem, let us considanfo with VSRS-1DFast [11], which is included in 3D-HTM.
temporal ., 44, 15, 44) predictions, two DIBR{P < %) predic- For comparison purpose, we also include the results of the su
tions and the vectors, = [i1, 75,4, 13] andpp = [iP,7%]. When  pixel precision warping technique with adaptive filteringgented
the temporal predictions are very close to the DIBR prediitior  in [18]. For fairness of comparison, all methods use the saohe
contained in the intervi? , i7] there are no reliable assumptions filling technique as that of VSRS-1DFast (a line-wise intgation).
that can be made about the accuracy of each prediction typgeT  We test our method using two different blending optionst éirsav-
fore, we should use the average or median of the six predictio eraging of the predictions (avg) and second the blendingriesi
([pe, pp]). However, when some or all of the temporal predictionsin Section 4. As shown in Section 3, each frame in the synthe-
are outside of this interval and there is a relatively higifiedence  Sized view is motion compensated from a past and futureeeder
between the two prediction types, we should use only the DIBR frame. While the past reference frame is available, theréutaf-
dictions. Based on this situations we can formulate theciele ~ erence frame needs to be synthesized only from DIBR predti
process as follows: before the motion compensation step. The MVFs are compuged u
ing an optical flow implementation for motion estimation [2®d
the motion compensation is performed with sub-pixel pienisThe
parameters used and additional details about the optigahfiethod
can be found in [24].

~ mear(pp) if mean(| [pe, pp] — mean([pe, pp]) |) > For each sequence and each QP, we synthesize the intermedi-
i = mean(| pp — mean(pp) |) ate views using the reference software (VSRS-1DFast), tig-w
mear([ps, pp]) otherwise ing with adaptive filtering method (Wf) in [18], our proposed

4) method with average blending (P+Bavg) and the adaptivedblen

For empirical reasons we decided to use the average overgtiam ing (P+Badapt). We evaluate the PSNR of each synthesis using
in the blending process as it provides slightly better tssiilhe se-  the original uncompressed sequences. Additional SSIMtseand
lection method described above is designed to replace thpaial ~ an extensive distortion analysis of the tested methods adadle
predictions with DIBR when motion estimation errors occide- in [25].

cause the reference frames used for motion compensatioalsare Tab. 1 shows the average PSNR for the reference methods and
synthesized, there are situations when this selectiorepsomay fail  ours. We can see that our method provides a better synthésis.

and provide slightly worse results on some frames. Howesgecan  ever, on Kendo sequence the averaging of predictions ddgz oo

be seen in the experiments section, this blending will @rmeo-  vide good results due to high intensity motion. This issuesslved

tion estimation errors in sequences with high intensityiomtwhile by the adaptive blending and the quality of the synthesidgkiy
maintaining similar results for the others. increased compared to the averaging blend. The last rows teo
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PSNR over time — Kendo QP25 PSNR over time - PoznanHall2 QP25

PSNR over time — NewspaperCC QP25

PSNR over time - Balloons QP25

—VSRS
Wi

—P+Bavg
dapt

PSNR (dB)
PSNR (dB)
@
PSNR (dB)
PSNR (dB)

31 —P+Bavg
— P+Badapt — P+Badapt —P+Badapt

o 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200
Frame number Frame number Frame number Frame number

—P+Bavg

(a) Balloons (b) Kendo (c) NewspaperCC (d) Poznan Hall2

Fig. 3. PSNR variation of the synthesized view over time for themefice and proposed methods at QP 25 in Balloons 3(a), K&bjlo 3
NewspaperCC 3(c) and Poznan Hall2 3(d) sequences.

(b) NewspaperCC

Fig. 4. Details in Balloons 4(a) and NewspaperCC 4(b) sequencésore 38. From left to right: original uncompressed, VSR3-ast,
Wf, P+Badapt. Red squares show artifacts in the synthesis.

average andAPSNR values of Wf, P+Bavg and P+Badapt over theon most test sequences. However, this method uses temporad ¢
VSRS-1DFast reference. We can see that all methods progdma lations in a video sequence and is dependent on the qualityeof
over VSRS-1DFast (0.42dB in average, with P-Badapt), while ~ motion estimation technique used. While it is able to obtairery
proposed methods manage to outperform Wf (0.1dB in averdge) good gain on Balloons sequence it falls behind on Kendo segue
can be noticed that the gain depends on the sequence. Tipestsas due to motion estimation failure caused by high intensitytiamo
are further discussed at the end of this section. In Fig. 3slvesv ~ This problem is corrected using the adaptive blending prtesiein
the PSNR variation over time for the four test sequencesbfesity ~ Section 4. In Fig. 3(a) and 3(b) we can see some drops in yueilit
reasons, we only show the QP 25 results as the behavior isimi some frames with P+Bavg which are corrected by P+Badapt.
across QPs. Black, green, red and blue colors indicate tlike-me
ods VSRS-1DFast, Wf, P+Bavg and P+Badapt. We can see that our 6. CONCLUSION
proposed methods outperform VSRS-1DFast by 0.65dB and Wf by
0.37dB at most, on NewspaperCC and Balloons sequences¥espen, this paper we presented an improved synthesis methodisieat
tively. Fig. 4 shows some details of the synthesis with thete®  the temporal correlations in the reference views in ordestitin
methods. From left to right we show the original uncompresgee  temporal predictions of the synthesized frame from twoedéffit
VSRS-1DFast, Wf and P+Badapt. Red squares mark areasicontakime instants. The temporal predictions are blended wihDIBR
ing artifacts. In 4(a) we can see artifacts around the costofithe  predictions using either an averaging or an adaptive bigngiethod
balloons and in 4(b) around the edge of the head. Itis ndfle¢bat  gesigned to reduce the impact of motion estimation errorse T
in the images on the right these artifacts are diminished. method was tested using the 3D-HEVC test model and compared
As can be seen in our experiments, the P+Bavg method providesith VSRS-1DFast synthesis and a sub pixel precision wgrtgioh-
a better quality synthesis when compared to VSRS-1DFastdnd nique. Our method brings gains of 0.42dB and 0.1dB in average
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