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ABSTRACT

In this paper, we propose a graph-based lifting transform for intra-
predicted video sequences. The transform can approximate the per-
formance of a Graph Fourier Transform (GFT) for a given graph,
but does not require computing eigenvectors. A predict-update bi-
partition is designed based on a Gaussian Markov Random Field
(GMRF) model with the goal to minimize the energy in the pre-
diction set. Additionally, a novel re-connection method is applied
for multi-level graphs, leading to significant gain for the proposed
bipartition method and for the conventional MaxCut based biparti-
tion. Experiments on intra-predicted video sequences show that the
proposed method, even considering the extra overhead for edge in-
formation, outperforms the Discrete Cosine Transform (DCT) and
approximates the performance of the higher complexity GFT.

Index Terms— Graph, Lifting transform, Intra-prediction

1. INTRODUCTION

The Graph Fourier transform (GFT) is been recently proposed for
image/video processing, including compression [11, 12, 7, 16] and
denoising [11, 6, 8]. The advantage of using GFT is its ability to
adapt to the characteristics of the signals, for which the position of
discontinuities have been signaled and are represented by a graph. In
[17], the use of GFT for block-based processing is first introduced
for depth map coding, where the high frequency edge structures can
be easily represented with low bitrate. In the work by Hu et al.[7],
edges with small pixel gradient are represented with an additional
optimized weight w ∈ (0, 1). A major challenge in using the GFT
is that it requires an eigen-decomposition, which can be complex.
Also, the computation of the transform requires O(N2) operations.
The first problem is partly addressed in [4], where a few graphs are
chosen as “templates”, and their corresponding eigenvectors are pre-
computed and stored. However, this method is applicable only for
small block size, e.g. 4×4 and 8×8, where the number of different
templates to consider is relatively small.

To deal with the complexity associated to the GFT, we apply a
graph-based lifting transform [13], which can be applied on irregu-
lar graphs. By using localized filtering, the complexity can be much
lower than GFT. Lifting on graphs has been applied to image de-
noising and video compression [13, 10, 9], but these were global
transforms, applied to the whole image (or video frame). In [1], lift-
ing was applied for block-based coding of depth maps, with results
that outperformed DCT-based coding and were comparable to using
GFT.

The simple lifting-based transform design in [1] performs well
for piecewise constant images, but does not provide advantages over
the DCT for more general signals such as natural images or intra-
prediction residuals. In this paper, we improve the block-based lift-
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ing transform of [1] and evaluate its performance on intra-predicted
residual video sequences. We first define a model for intra-predicted
residues using GMRF, and design a bipartition approach to mini-
mize the energy in the prediction set. Second, we propose a novel
re-connection technique to improve the prediction in localized filter-
banks. The performance of lifting using the conventional MaxCut
based bipartition [10] can also be enhanced with the re-connection.
The results of the proposed method on test sequences outperform
DCT and are comparable to those obtained with GFT, but without
high complexity computation such as eigen-decomposition.

The rest of the paper is organized as follows. In Section 2, we
review some preliminaries for graphs and the lifting transform, and
discuss the bipartition algorithm based on GMRF model. Section
3 describes the filterbank design with graph re-connection based on
the proposed bipartition. In Section 4, we compare the complexity of
our approach and that of the GFT. The experiments and conclusion
are presented in Sections 5 and 6.

2. UPDATE-PREDICT BIPARTITION IN LIFTING
TRANSFORM

2.1. Preliminaries

A weighted graph G = (V,E) consists of a set of nodes v ∈ V ,
and edges ei,j ∈ E, which capture the similarities between two con-
nected nodes i and j. The similarity is measured using a weight
wi,j ∈ [0, 1]. The information can be represented with an adjacency
matrix A where element A(i, j) = wi,j . The combinatorial Lapla-
cian matrix is defined as L = D−A, where D is a diagonal matrix
with element D(i, i) =

∑
k wi,k.

The lifting transform is a multi-level filterbank that guarantees
invertibility. At each levelm, nodes are first divided into two disjoint
sets, a prediction set (Sm

P ) and an update set (Sm
U ). The values in Sm

U

are used to predict the values in Sm
P . The resulting prediction errors

are stored in Sm
P , and are then used to update the values in Sm

U . The
smoothed signal in Sm

U will serve as the input signal to level m+ 1.
The computation for coefficients in Sm

P uses only the information in
Sm
U , and vice versa. Carrying on the process iteratively produces a

multiresolution decomposition.
For video/image compression applications, the coefficients in

the update set of the highest level q, along with the prediction set
information in levels {q − 1, q − 2, · · · , 1} will be quantized and
entropy coded. Therefore, in order to enhance the coding efficiency,
the bipartition should be designed so that the energy in the prediction
set is minimized. The most commonly applied method is based on
computing a maximum cut (MaxCut) [10, 9, 14], where the total link
weight between SP and SU is maximized. Since each weight mea-
sures the similarity between the connected nodes, by doing MaxCut,
the similarity between two sets is maximized. In [14], MaxCut is
proved to be optimal in minimizing a lower bound of the l1 norm
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prediction error using linear filters if entries in the signal are iden-
tically distributed. However, the model fails to consider the corre-
lation among signal entries. In this paper, we will show that by ex-
ploiting the relations between signal elements modeled as a Gaussian
Markov Random Field (GMRF), the coding gain can be significantly
improved.

2.2. Multi-level bipartition based on GMRF model
The proposed transform is implemented independently for m × m
blocks in the intra-predicted residual video. Denote f ∈ Rm2

the
columnized block. Each block is then modeled as a realization of a
GMRF, where f ∼ N(µ,Σ ∈ Rm2×m2

). In our work, we assume
zero mean for each block. Σ is the covariance matrix, and its inverse
Q = Σ−1, called precision matrix, measures the partial correlation
among samples. Samples i and j are conditionally independent if
Q(i, j) = 0. Instead of estimating elements in Q using actual sig-
nal statistics, we define Q as a function of the graph Laplacian as
Q = σL̃, where L̃ is defined as L + δI. A small self-loop weight δ
is introduced here to ensure the matrix invertibility so that the prob-
abilistic interpretation holds. The graph Laplacian has been utilized
widely in the literature as a prior for image blocks [17, 7, 1]. In our
work, the graph for each block is constructed using the information
from the edge map. Each block is represented first as a 4-connected
grid graph. Image edges are detected based on pixel gradient. Given
a threshold value T , for two nodes i and j with pixel difference
greater than T , the link is assigned a weight c ∈ (0, 1). Two blocks
with different image edge structure will have different graph Lapla-
cian and GMRF model.

The bipartition is done such that the expected l2 norm error in
the prediction set based on MAP estimate from the update set is min-
imized. A similar idea has been proposed for sampling and to define
a predictive transform [5, 21]. Define fP as the vector containing
entries corresponding to the prediction in f , and fU as the vector
for the pixels in the update set, the MAP estimate of fP given fU is
computed as

µP |U = ΣPUΣ†UU fU

= L̃†PP L̃PU fU ,
(1)

where L̃† is the pseudo-inverse of L̃. This is equivalent to the MMSE
estimate in GMRF. The bipartition problem can then be formulated
as a sampling problem, where we look for the update set that min-
imizes the MAP estimate error in the prediction set. The objective
function can be written as:

S∗U = arg min
SU

EMAP(SU ,SP )

= arg min
SU

E[‖fP − µP |U‖
2]

= arg min
SU

tr(E[(fP − µP |U )(fP − µP |U )t])

= arg min
SU

tr(ΣPP −ΣPUΣ†UUΣUP )

= arg min
SU

tr(L̃†PP ).

(2)

In our experiments, we select half the nodes at each lifting level to
form the update set. If q as the number of levels, the update set
Sm
U for level m, where m = {1, 2, · · · , q}, is computed using the

sampling method shown in Algorithm 1.
Note that we use a greedy approach to solve (2), since the orig-

inal problem is NP hard. In each iteration, one node vi is selected
and added to SU .

Algorithm 1 Bipartition in multi-level lifting transform

Input graph G = (V,E); SU = ∅; SP = V ; {Sm
U = ∅}m=1:q

1: for m = q : −1 : 1 do
2: compute the update set size |Sm

U | = |V |/2m

3: for s = 1 : 1 : |Sm
U | do

4: Select vi∗ = arg minvi
EMAP(SU ∪ {vi}, SP /{vi})

5: SP = SP /{vi∗}
6: SU = SU ∪ {vi∗}
7: end for
8: Sm

U = SU

9: end for

Fig. 1: Boundary extension for pixels around block boundaries.

2.3. Boundary and edge extension
In GMRF, the diagonal element (i, i) in the precision matrix can be
interpreted as the inverse of the prediction error for node i given
V/{i}. Hence, the nodes around block boundaries and image edges,
which have lower degree, are considered to have larger prediction
error, and therefore are given higher priority in sampling. However,
the node near boundaries tend to be further away from other nodes,
making prediction using these nodes less efficient. To address this
issue, we equalize the number of links for each node by using a sym-
metric boundary extension as shown in Fig. 1. As a result, the graph
used for sampling is augmented. The approach is consistent with the
filterbank used later, which also uses a boundary extension with de-
gree normalization. An example is shown in Fig. 1. If node v (node
11 in the example) is selected as a sample, its mirrored nodes (de-
noted 11′) are also selected. Note that the weight between extended
node v′ and a boundary node x (e.g., node 15) is equivalent to the
weight between v and x. The same idea is also applied for nodes
around image edges, see Algorithm 2.

Algorithm 2 Boundary/Edge extension for sampling on graphs

Input SU = ∅, SP = V
Output SU and SP after sampling

1: Extend the Adjacency matrix A to include the extended nodes
(called Aext) around boundaries and edges.

2: Compute the Laplacian matrix as Dext −Aext + δI. of data in
former batches;

3: Choose the sample y s.t. y, along with its extended nodes
{y′, y′′ · · · } and previously sampled set, minimize the MAP er-
ror in set V/{y}.

4: S = S ∪ {y}, and Sc = Sc/{y}.
5: Iterate steps 3-4 until the specified sample size is reached.

3. FILTERBANK DESIGN IN MULTI-LEVEL LIFTING
TRANSFORM

For filterbank design, we adopt the CDF53 based approach proposed
in [18]. Define the input signal (level 0) as s0, In level m, the nodes
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Fig. 2: Graph construction in higher level decomposition via kron
reduction. k = 4 for sparsification.

(a) (b) (c)

Fig. 3: (a) A toy example consists of smooth (left half) and high
variance (right half) areas. (b) The bipartite graph used for predic-
tion/update operators with 1-hop links. (c) The bipartite graph used
for prediction/update operators with links derived from Kron reduc-
tion (k = 4). The nodes in the update set are marked as red.

are first divided into (Sm
P , S

m
U ), and the coefficients are computed as

dmi∈Sm
P

= sm−1
i∈Sm

P
−

∑
k∈Sm

U

pm(i, k) · sm−1
k

smj∈Sm
U

= sm−1
j∈Sm

U
+

∑
r∈Sm

P

um(j, r) · dmr ,
(3)

where the smj are the smooth coefficients stored in the update set in
level m, and dmi are the detail coefficients stored in the prediction
set in level m. The smooth coefficients in level m − 1 are taken as
the input signal in level m. The prediction and update operators are
functions of the adjacency matrix Am of the graph at level m.

3.1. Graph construction in higher level decomposition
After the process in the 1st level lifting transform, only the smoothed
values in the update set are utilized in the next level (e.g. the red
nodes in Fig. 2). Since the number of nodes is reduced and the
average distance between them is longer, a connected graph for fil-
tering cannot be built solely with the 1−hop links used in level
1. Therefore, graph links providing more global correlation among
graph nodes are required. To achieve this, for graph construction at
level m > 1, we apply Kron reduction [19] using the graph from
level m − 1. The Kron reduction computes the graph Laplacian
for a subgraph S as L(V, S) = LS,S − LS,ScL

†
Sc,Sc

LSc,S . How-
ever, the graph produced with Kron reduction is usually dense. In
fact, without further sparsification, for small blocks like 8 × 8, the
graph becomes fully connected after level 3. Thus, to achieve a good
compromise between localization and graph connectivity, we apply
a simple sparsification by keeping only the k nearest neighbors for
each node. In Fig. 2, we show an example of graph construction for
a 8× 8 block taken from the intra-predicted residual sequences.

3.2. Graph re-connection for prediction
In the lifting transform at each level, the coefficients in the predic-
tion set are computed based only on information in the update set,
and vice versa. Therefore, the graph utilized for transform is in fact
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Fig. 4: The comparison between proposed lifting scheme, Max-
Cut based lifting, and the MaxCut based lifting with proposed re-
connection technique.

a bipartite graph with only the links connecting nodes in the op-
posite sets. In our work, the proposed bipartition scheme is based
on minimizing the prediction error of MAP estimate. As a result,
the update set nodes in high variance region, e.g. areas with lots
of image edges, are densely distributed compared to the distribution
in smoothed area. Intuitively, in smooth regions pixels have similar
values even they are several hops away, thus selecting a large number
of update samples in these areas is redundant. In [10, 9], the bipartite
graph used for update and prediction operators consists of only the
1-hop links in the original graph. In consequence, for areas where
the sampled nodes for update set are sparsely distributed, the nodes
in the prediction set may few or no links connecting the update set,
resulting in higher prediction error. An example is shown in Fig.3(b)
for the toy example in Fig.3(a).

Based on the density variation, the links in the bipartite graph for
transform need to be adjusted accordingly. Again, we use the Kron
reduction to reconnect the bipartite graph. The algorithm consists
of two parts: First, each node v in the prediction set SP is con-
nected to the update set SU by calculating the subgraph Laplacian
L(V, SU ∪ {v}), where only the links between v and SU are kept.
Later, a sparsification that keeps only k nearest neighbors for each
SP node is applied. The CDF53 filterbank previously described is
implemented on the sparsified bipartite graph (Fig.3(c)).

We compare the coding gain of the proposed bipartition and re-
connection approach with the MaxCut based lifting in [10]. The test
sequences consist of 7 frames from 7 video sequences. The result is
shown in Fig. 4. The result also include the result of MaxCut based
bipartition with re-connection using Kron reduction. Note that even
with a simple bipartition scheme like the greedy approximated Max-
Cut, with better designed re-connection, the performance is compa-
rable to the one with GMRF model, making further simplification of
sampling a direction for the future work.

4. COMPLEXITY ANALYSIS

In this section, we discuss the complexity of the graph-based lifting
transform and GFT, for a graph G of size N . The GFT operations
for each graph include i) finding the eigenvector decomposition and
ii) applying the transform on the signal. Eigenvector decomposi-
tion is a process of high complexity that takes O(N3) even when
the Laplacian matrix is sparse. The transform needs matrix-vector
multiplication which takes O(N2), due to the fact that the matrix is
dense in general.
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Methods GFT Lifting with GMRF sampling Lifting (Max Cut w/ re-connection) Lifting (Max Cut based)
∆ PSNR (dB) ∆ rate (%) ∆ PSNR (dB) ∆ rate (%) ∆ PSNR (dB) ∆ rate (%) ∆ PSNR (dB) ∆ rate (%)

Foreman 0.34 -7.28 0.29 -6.42 0.26 -5.77 0.17 -3.63
Mobile 0.17 -1.46 0.10 -0.97 0.10 -0.96 0.08 -0.51
Silent 0.22 -4.28 0.20 -3.88 0.18 -3.58 0.09 -1.66

Deadline 0.37 -4.97 0.31 -3.98 0.30 -3.90 0.24 -3.19

Table 1: PSNR-bitrate comparison with bjontegaard metric. The negative value for ∆rate indicates the average bitrate reduction against DCT,
and the positive ∆ PSNR shows the average PSNR gain.

Fig. 5: Encoder for intra-predicted videos with mode selection be-
tween DCT and the graph based lifting transform.

Next, we consider the complexity of lifting transform based on
the greedy MaxCut bipartition and graph re-connection, which pro-
vides performance comparable to GMRF based bipartition. Creating
the lifting basis consists of 3 parts: Bipartition with greedy approx-
imated MaxCut [9], re-connection with Kron reduction, and genera-
tion of the graph in the next higher level. The greedy MaxCut selects
the node with the maximum gain, corresponding initially to the de-
gree. The initialization requires sorting, which takes O(N logN) if
a better data structure like max-heap is used. In each iteration, after a
node with the maximum gain is selected, the gain of its neighboring
node will be adjusted. The max-heap for gain values will be adjusted
accordingly, which take O(logN) since the number of neighbors is
constant for sparse graphs.

For Kron reduction, even though the calculation of L(V, S) re-
quires taking the matrix inverse, [3] shows that the computation
can be implemented iteratively, where nodes in V/S are eliminated
one by one, and the complexity depends on the number of links
connected to the eliminated node. The paper also shows that the
graph maintains sparsity pattern within Kron iteration. Define c to
be the maximum number of links for the eliminated node during
Kron iteration. The cost for eliminating one node thus takes O(c2),
and the total complexity for Kron reduction is O(c2N). The re-
connection needs to be done for all the nodes in the prediction set.
However, during each Kron reduction, only the connection for the
specified prediction node to the update set is considered, so the cost
for eliminating one node is O(c). Therefore, the overall complex-
ity is O(cN2) for the re-connection. The number of lifting levels
needed is logN , since in each level, half of the nodes are taken in
the update set. In the end, the overall complexity to define the lifting
basis is O(cN2 logN). Note that the graph size in the higher lifting
levels is smaller. Hence, we can expect much lower complexity in
the real implementation.

The lifting transform has complexity O(N) at each level, since
the operation for each node requires only its neighbors, which is con-
stant for a sparse graph. Therefore, the total complexity of transform
application isO(N logN). In a real application, if the graphs can be
pre-computed as templates as in [4], the only computation needed is
the transform part, where the graph lifting provides significant com-
plexity reduction as compared to the GFT. In our implementation,

graph based lifting transforms were over 50% faster than GFTs.

5. EXPERIMENTAL RESULTS

In the experiment, we generate the intra-predicted residual frames
for test sequences Foreman, Mobile, Silent, and Deadline using
HEVC(HM-14) with transform unit size fixed as 8 × 8. The en-
coder system is shown in Fig. 5. The mode selection is done by
choosing the transform with minimum RD cost defined as SSE + λ·
bitrate, where λ = 0.85 · 2(QP−12)/5. The QP values used in this
experiment are from 24 to 36 with step size 2. For blocks encoded
with graph based lifting, the image edge overhead is coded with the
arithmetic edge coding (AEC) [2], first connecting adjacent edge
components as contours, then encoding each contour with context-
based method. In order to further reduce the overhead cost, in each
8× 8 block only one contour is allowed. Beside, the encoder needs
to send a flag indicating the transform chosen. Both DCT and lifting
transformed coefficients are uniformly quantized and encoded with
an amplitude group partition technique called AGP [15]. AGP can
learn and adapt to different coefficient distribution, thus provides
fair comparison between different transforms. Before quantization,
the coefficients of CDF53 lifting transform are first normalized
based on [20] so as to compensate for the lack of orthogonality. The
DCT coefficients are zig-zag scanned, and the coefficients for lifting
are ordered from lowest frequency (update set in the highest level)
to highest frequency (the prediction set in the 1st level). Within
each subband, coefficients are ordered from low reliability to high
reliability [18].

The average PSNR gain and bitrate reduction are presented in
Table 1. For videos with simple edge structures like Foreman and
Deadline, graph based lifting has around 0.3dB gain in PSNR.
While in the videos with complicated edge structure like Mobile, the
gain is limited since the edge map dominates the cost. We also show
that MaxCut based bipartition with graph re-connection provides
a good approximation to both the higher complexity GMRF based
bipartiton and GFT.

6. CONCLUSION

In this paper, we propose a transform for intra-predicted video cod-
ing based on the graph based lifting transform. The bipartition al-
gorithm is justified based on GMRF model, and provides better cod-
ing gain than MaxCut based bipartition. We also show that with
better graph reconnection, even with simple MaxCut bipartition, we
can outperform DCT and approximate the higher complexity GMRF
based approach and GFT. These promising results motivate us to
consider other settings, such as video coding with larger blocksize,
in future work.
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