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ABSTRACT 
 
Sparse representations over redundant dictionaries have 
shown to produce high quality results in various signal and 
image processing tasks. Recent advancements in learning of 
the sparsifying dictionaries have made image compression 
based on sparse representation a promising field. In this 
paper, we present a boosted dictionary learning framework 
to construct an ensemble of complementary specialized 
dictionaries for sparse image representation. Boosted 
dictionaries along with a competitive sparse coding can 
provide us with more efficient sparse representations. Based 
on the proposed ensemble model, we then develop a new 
image compression algorithm using boosted multi-scale 
dictionaries learned in the wavelet domain. Our algorithm is 
evaluated for compression of natural images. Experimental 
results demonstrate that the proposed algorithm has better 
rate-distortion performance as compared with several 
competing compression methods including analytic and 
learned dictionary schemes. 
 

Index Terms— Image compression, boosted dictionary 
learning, sparse representation, wavelet. 
 

1. INTRODUCTION 
 
Compression of natural images is realized by capturing and 
exploiting redundancies found in these images. The most 
widely used image compression technique is transform-
based coding where quantization and encoding are applied 
on the transform coefficients of the image [1]. This 
approach has been extensively investigated in the past three 
decades leading to powerful compression standards 
including JPEG [2] and JPEG2000 [3]. The widely used 
JPEG image compression standard is based on discrete 
cosine transform (DCT) while its successor, JPEG2000 
standard, employs wavelet transform to obtain more 
compact representations. There are several other wavelet-
based compression algorithms such as the well-known Set 
Partitioning in Hierarchical Trees (SPIHT) algorithm [4]. 

These compression methods are general-purpose, in the 
sense that they are not tailored to specific classes of images. 

They employ an analytic dictionary of basis elements over 
which the image is known to be compressible. However, 
dictionary design has evolved over the past decades. The 
latest trend is to use learned and data-adaptive dictionaries 
[5]. Sparse representation over the learned dictionaries 
instead of analytically predefined ones has been shown to 
produce impressive results in various image processing 
tasks [6]. Targeted at a specific class of images, the learned 
dictionaries have also shown promising results in several 
recent works on compression of facial images [7,8], 
fingerprint images [1], and synthetic aperture radar (SAR) 
images [9,10]. Compression of general images using the 
learned dictionaries has also been investigated in [11-13]. 

In this paper, we target natural image compression 
using dictionary ensembles. We first present a Boosted 
Dictionary Learning (BDL) framework for compact image 
representation. In this framework, we use a boosting 
strategy to train a set of dictionaries sequentially, where 
each dictionary is optimized for the training samples having 
high representation errors in the previous ones. Given this 
ensemble of different specialized dictionaries, the most 
fitted dictionary is adaptively selected for each input data to 
be sparsely approximated. Based on the proposed boosting 
framework, we then develop a new image compression 
scheme in which the BDL is applied in the analysis domain 
of the Wavelet transform to create boosted multi-scale 
dictionaries. The experimental results on natural images 
demonstrate that our algorithm outperforms competing 
compression methods including both analytic and learned 
dictionary schemes. 

The rest of the paper is organized as follows. In Section 
2, we elaborate on the details of our boosted dictionary 
learning approach. Section 3 introduces the proposed image 
compression scheme based on boosted dictionaries. 
Experimental results are presented in Section 4 and we 
conclude the paper in Section 5.  
 

2. BOOSTED DICTIONARY LEARNING 
 
The dictionary plays a critical role in a successful sparse 
representation modeling and learned overcomplete 
dictionaries have been popular in recent years. In image 

1130978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



processing applications it is common to train dictionaries for 
sparse representation of small image patches collected from 
a number of images. Recurrence of these local regions in 
natural images allows building of effective representative 
dictionaries. However, by learning based on a generic image 
dataset, we may not accurately capture the appearance of all 
image patches using a single, universal, and compact 
dictionary. This means that a trained dictionary could 
produce better sparse approximations for some training 
image patches as compared to some other ones. 

To alleviate this problem, we present a boosted 
dictionary learning (BDL) approach to train a sparsifying 
dictionary ensemble consisting of multiple over-complete 
dictionaries with complementary representational powers. 
Fig. 1(a) illustrates the block diagram of the BDL. As shown 
in this figure, the BDL applies a given base learning 
algorithm repeatedly in series of boosting rounds ݈ = 1, … ,  ܮ
to learn a set of dictionaries {۲௟}௟ୀଵ௅  sequentially. Each 
round proceeds in three stages of dictionary training, data 
partitioning, and dictionary refinement. Given a set of ܰ 

training image patches, ܇ = ൛ܡ௝ ∈ ℝ௡ൟ௝ୀଵே
, the training stage 

of each round ݈ is conducted as a joint optimization problem 
with respect to the dictionary ۲ ∈ ℝ௡×௄ (ܭ > ݊) and sparse 
representations ܆ = ,ଵܠ] ,ଶܠ … , [ேܠ ∈ ℝ௄×ே: (۲෩ ௟, (෩௟܆ = argmin۲, ܆  ݂(۲, ,܆ ݈∀    ,(௟܇ = 1, … , (1) ܮ

where ܇௟ ⊆  denotes the training data for round ݈, and ݂ is ܇
objective function of the base learning algorithm. In 
reconstructive tasks such as our case, ݂ is generally 
composed by a data fitting term and a sparsity-inducing 
norm [14]. Let us denote Λ௟ as the index set of training 
samples used for learning ۲෩ ௟. At the beginning of boosting, Λ௟ includes indices of all training samples (i.e. Λଵ ={1,2, … , ܰ}), but it is modified in the subsequent rounds. In 
fact, the second stage of each round partitions the set ܇௟ into 
disjoint subsets ܇෩௟ and ܇௟ାଵ. The data partitioning is 
accomplished based on the representation error of sparse 
coefficients obtained for the training set. For this purpose, 
we compute the sparse representations {ܠ௟,௝}௝∈ஃ೗ of ܇௟ ௝∈ஃ೗ with respect to ۲෩{௝ܡ}= ௟ under the same sparsity level 
fixed to a small value ߬଴. This is done using orthogonal 
matching pursuit (OMP) method [15]. Let ܍௟ = {݁௟,௝}௝∈ஃ೗ be 
the set of residual errors calculated as: ݁௟,௝ = ฮܡ௝ − ۲෩ ௟ܠ௟,௝ฮଶଶ  ,   ∀݆ ∈ Λ௟ (2)

The set ܍௟ is sorted in ascending order to get a set ܍௟௦ =൛݁௟,ଵ௦ , … , ݁௟,|௸೗|௦ ൟ. Then, the index set Λ௟ାଵ of training samples 
for next round of boosted learning is determined as: Λ௟ାଵ = ቊ݆ ∈ Λ௟ ∶ ݁௟,௝ ≥ ݁௟,ቔே௅ ቕ௦ ቋ (3)

where ۂݔہ returns the integer part of ݔ. Also, the compleme-
ntary set of Λ௟ାଵ in Λ௟, denoted by Λഥ௟ାଵ = {݅ ∈ Λ௟: ݅ ∉ Λ௟ାଵ} 

 
(a) 

 
(b) 

Fig. 1. (a) Steps of the proposed boosted dictionary learning 
scheme. (b) Block diagram of dictionary refinement stage.  
 

 
Fig. 2. Example of dictionaries obtained by our boosting approach 
with four rounds of boosting trained on 8 × 8 image patches. 
 
, specifies the subset ܇෩௟ which is presented at the input of the 
dictionary refinement stage. The refinement stage for ݈-th 
round is conducted by enrichment of the training set ܇෩௟ with 
new samples and refinement of dictionary ۲෩ ௟. The goal of 
refinement is to focus on specific group of samples and 
optimizing dictionary for representation of them. This in 
turn increases sparsity and improves reconstruction 
performance of dictionary on that group. In this stage, we 
first extract new samples ܇௟௡௘௪ = ௝ୀଵே{௟,௝௡௘௪ܡ}  from training 
images and obtain their representations {ܠ௟,௝௡௘௪}௝ୀଵே  over ۲෩ ௟. 
Let ܍෤௟ = {݁௟,௝ ∶ ݆ ∈ Λഥ௟ାଵ} be the error set corresponding to ܇෩௟. Based on ܍෤௟ and residual error of new samples, ݁௟,௝௡௘௪, the 

refinement set ܇௟௥௘௙ is produced as follows. ܇௟௥௘௙ = ෩௟܇ ∪ ൛ܡ௟,௝௡௘௪ ∶ min(܍෤௟) ≤ ݁௟,௝௡௘௪ ≤ max(܍෤௟) , ݆ = 1: ܰൟ (4)

Using ۲෩ ௟ as an initial dictionary, ܇௟௥௘௙ is used to train a 
refined dictionary ۲௟ (see Fig. 1(b)).  

After completion of all boosting rounds, the ensemble 
dictionaries {۲௟}௟ୀଵ௅  are obtained. Fig. 2 demonstrates an 
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example of a trained ensemble using BDL approach learned 
with ܮ = 4 on a set of 8 × 8 image patches. In this example, 
K-SVD algorithm [16] is employed as the base learning 
algorithm in each boosting round. As can be seen in Fig. 2, 
BDL produces dictionaries which are progressively adapted 
to image patches with more complex content. 

 
3. IMAGE COMPRESSION ALGORITHM  

 
3.1. Boosted Multi-scale Dictionary Ensemble 
 
Targeted at compact representation of natural images, we 
obtain data-adaptivity by training the dictionary ensembles 
using the BDL approach. In our proposed compression 
method, we adopt the Wavelet transform as the first layer of 
image sparsification and apply the learning algorithm on 
Wavelet coefficient patches. In this way, spatial correlations 
among Wavelet coefficients are exploited to reduce some of 
the remaining redundancies among the coefficients. 
Moreover, due to the multi-scale properties of the Wavelet 
decomposition, a multi-scale dictionary can be learned in 
this way [17]. It is known that different Wavelet bands 
possess different directional correlations. Thus, the band-
specific dictionaries are trained to push sparsity further by 
using highly specialized dictionaries. If  ܵ indicates the 
number of Wavelet decomposition levels, 3ܵ band-specific 
dictionary ensembles ॰௕ = {۲௟௕}௟ୀଵ௅ , ܾ = 1,2, … ,3ܵ are 
trained for detail bands of Wavelet transform. These 
dictionaries are obtained in an off-line process and stored 
both in the encoder and decoder. 
 
3.2. Sparse Coding 
 
In the compression stage, the learned dictionary ensembles 
are used to encode Wavelet coefficient patches. More 
precisely, the input image is firstly decomposed using a ܵ-
level Wavelet transform into 3ܵ + 1 bands including 3ܵ 
detail bands plus an approximation image. Each detail band 
is sliced into non-overlapping patches which are sparse 
coded by using the corresponding dictionary ensemble. The 
sparse coding is accomplished in a competitive way by 
generating a group of competing representations and 
choosing the best one based on their representation 
accuracy. Let ܡ be the input image and [܅஺ܡ]௕ denote the 
coefficient band ܾ of its Wavelet decomposition using 
Wavelet analysis operator ܅஺. The competitive coding of 
the ݆-th patch from the band ܾ, denoted by [܅஺ܡ]௝௕, with 
respect to the dictionary ensemble ॰௕ = {۲௟௕}௟ୀଵ௅  is started 
by solving the error-constrained sparse coding problem: ܠଵ,௝௕ = argminܠ ௝௕[ܡ஺܅]଴   s.t.  ฮ‖ܠ‖  − ۲ଵ௕ܠฮଶଶ ≤ ߳ଶ (5)

where the error threshold ߳ varies with the compression rate. 
Only the first dictionary in each boosting ensemble is 
globally learned using total training data. The sparsity levels 
of other competing representations are determined based on 

 
Fig. 3. Rate-distortion performance of our method using BDL with 
varying number of boosting rounds ܮ.  
 
this global dictionary. Assuming an ensemble ॰௕ = {۲௟௕}௟ୀଵ௅  
of ܮ dictionaries for the band ܾ, the competitive coding 
method allows each patch to select its optimal dictionary 
from the ensemble as: ߛ௝௕ = argminଵஸ௟ஸ௅ ฮ[܅஺ܡ]௝௕ − ۲௟௕ܠ௟,௝௕ ฮଶଶ (6)

where ߛ௜௕ is the index of optimal dictionary for the 
coefficient patch [܅஺ܡ]௝௕. 
 
3.3. Quantization and Entropy Coding 
 
Once the sparse representation of all non-overlapping 
patches of all detail bands are obtained, they are arranged as 
columns of sparse matrix ܆ ∈ ℝ௄×ெ, where ܯ is the total 
number of patches. This matrix is quantized using a uniform 
quantizer to form ܆௤. We put the nonzero values of ܆௤ into 
one sequence and the running differences of their position 
indices into another sequence. These two sequences, along 
with the set ડ of the optimal dictionary indices are then 
encoded using arithmetic entropy coding. 

The approximation coefficients of Wavelet transform at 
the coarsest scale are also uniformly quantized and entropy 
coded. Quantization is performed using the same 
quantization step size ߜ as for the sparse coefficients ܆. To 
adjust the value of ߜ, an iterative process is done until a pre-
specified quantization-induced PSNR loss is reached. We 
empirically found that a ߜ giving a PSNR loss in the range 
of [0.9-1.0] dB, is an appropriate value for it. To compress 
the quantized approximation coefficients, we use the 
adaptive prediction technique [18]. 
 

4. EXPERIMENTS 
 
4.1. Assessment of Boosted Learning 
 
To verify the effectiveness of the proposed BDL in 
providing more efficient sparse representations, we apply it 
in our image compression scheme and evaluate the rate-
distortion performance with respect to the number of
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(a) (b) 

 
(c) 

Fig. 4. Rate-distortion performance of the proposed method compared to JPEG2000 [3], JPEG [2], SPIHT [4] and RLS-DLA [11] on three 
standard test images: (a) Couple, (b) Barbara, (c) Fingerprint. 

 
Table 1. PSNR comparison of the proposed compression method with competing ones at three different bit-rates. Best results are in bold. 

Rate (bpp) 0.2 0.6 1.0 
Images JPEG2000 SPIHT RLS-DLA BDL JPEG2000 SPIHT RLS-DLA BDL JPEG2000 SPIHT RLS-DLA BDL 

Barbara 27.30 26.18 26.78 27.69 33.39 31.92 32.54 33.94 37.17 35.80 36.08 37.51 
Boat 29.16 28.61 28.94 29.52 34.19 33.42 33.95 34.52 36.73 35.95 36.39 36.97 

Bridge 24.71 24.41 24.64 24.97 28.38 27.94 28.60 28.98 31.25 30.41 31.26 31.76 
Couple 28.51 27.93 28.43 28.91 33.78 32.79 33.54 34.46 36.85 35.88 36.41 37.37 
F.print 24.48 23.77 22.99 25.48 30.17 29.24 29.20 30.66 33.09 32.04 32.67 33.78 

Hill 29.79 29.35 29.73 30.16 33.90 33.27 33.92 34.48 36.47 35.70 36.46 37.03 
Lena 33.02 32.73 32.93 33.44 38.04 37.58 37.95 38.51 40.42 39.95 40.25 40.85 
Pirate 27.37 27.14 27.43 27.78 32.13 31.54 32.03 32.55 34.99 34.50 34.67 35.30 

Average 28.04 27.52 27.73 28.49 33.00 32.21 32.72 33.51 35.87 35.03 35.52 36.32 

 
boosting rounds. In this experiment, we use a set of 100 
randomly chosen images from the Berkeley segmentation 
dataset [19] where 30 images are employed for training 
dictionaries and the rest for testing. These images are 
transformed using two-level 9/7 Wavelet decomposition. 
The train set is prepared by random sampling of 8 × 8 
patches from the Wavelet detail bands of training images. 
For the whole set of training images, 80000 patches are 
extracted and vectorized for each band.  

Under different settings for ܮ, we train a dictionary 
ensemble for each detail band with ܭ = 512 using K-SVD 
[16] as the base learning algorithm. The boosted ensembles 
are then employed in our compression algorithm to 
compress the test images. Fig. 3 shows the rate-distortion 
curves resulted from these ensembles, where each curve is 
averaged over the test images. As can been seen, boosted 
learning (i.e. ܮ > 1) improves the performance compared to 
the traditional learning (i.e. ܮ = 1), and the improvement 
increases with ܮ. However, with incrementing of ܮ, the gain 
becomes smaller due to the extra cost imposed for 
transmission of dictionary indices ડ. In the following, this 
parameter is fixed to ܮ = 6. 
 
4.2. Comparison to other Compression Methods 
 
We compare the proposed compression algorithm with four 
competing methods: JPEG, JPEG2000, SPIHT [4], and 
RLS-DLA [11] which uses a learned dictionary in the 
Wavelet domain. The performance evaluation is conducted 

on a set of standard test images shown in Table 1. 
Construction of boosted dictionaries follows the same 
procedure described in the previous section. Fig. 4 shows 
comparison of rate-distortion curves for three images of test 
set. As can be observed, our compression method 
outperforms the other ones particularly for rates above 0.2 
bpp. The PSNR results on test images at three distinct rates 
are reported in Table 1. Compared to the RLS-DLA, our 
method based on boosted learning provides an average 
PSNR gain of about 0.8 dB at low and moderate bit-rates. 

In terms of computational cost, our method takes about 
3.8 seconds for compressing a 512×512 image at 0.2 bpp 
using a non-optimized MATLAB implementation on a 3.40 
GHz Intel Core i7 CPU. This is comparable to the 
compression time of RLS-DLA method (3.5s). 
Decompression time for both methods is less than 1s. 
 

5. CONCLUSION 
 
In this paper, we presented a boosting approach to 
dictionary learning for the purpose of compact image 
representation. Using a competitive sparse coding, with a set 
of boosted dictionaries, improves the quality of sparse 
image approximations. Based on this approach, we 
developed a new image compression algorithm using 
boosted dictionaries learned in the Wavelet domain. 
Assessment of rate-distortion performance on a set of 
natural images, confirmed the effectiveness of the proposed 
boosted dictionary learning approach.  
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