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ABSTRACT 

 

In a video surveillance system with static cameras, object 

segmentation often fails when part of the object has similar color 

with the background, resulting in poor performance of the 

subsequent object tracking. Multiple kernels have been utilized in 

object tracking to deal with occlusion, but the performance still 

highly depends on segmentation. This paper presents an innovative 

system, named Multiple-kernel Adaptive Segmentation and 

Tracking (MAST), which dynamically controls the decision 

thresholds of background subtraction and shadow removal around 

the adaptive kernel regions based on the preliminary tracking 

results. Then the objects are tracked for the second time according 

to the adaptively segmented foreground. Evaluations of both 

segmentation and tracking on benchmark datasets and our own 

recorded video sequences demonstrate that the proposed method can 

successfully track objects in similar-color background and/or 

shadow areas with favorable segmentation performance.  

 

Index Terms— Adaptive Segmentation, Object Tracking, 

Multiple Kernels, Background Subtraction, Shadow Removal 

 

1. INTRODUCTION 

 

Because of the low cost of cameras, they are widely used in the 

world. To effectively assist people to deal with huge amount of 

videos, more and more intelligent video surveillance systems are 

getting deployed. Object tracking is a key issue in many surveillance 

applications. Since most object tracking approaches are based on 

extracting foreground objects, the failure in foreground object 

segmentation can severely degrade the performance of tracking. It 

usually occurs in the following scenario: when an object enters into 

camera’s field of view in which some parts of the body have similar 

color with the modeled background, object segmentation can easily 

fail because the corresponding foreground regions are likely to be 

merged into background or recognized as shadow (the problem of 

object merging). These will eventually lead to a dead loop that 

results in increasing errors in tracking. In this paper, a novel object 

segmentation and tracking system is proposed to deal with this 

problem. The general idea of the proposed Multiple-kernel Adaptive 

Segmentation and Tracking (MAST) is to preserve more foreground 

in segmentation based on region-level similarity between the input 

image and background, which is calculated using feedback from the 

preliminary tracking results. Moreover, the optimized segmentation 

result is further used for updated tracking to improve its accuracy. 

Our main contributions are highlighted as: (i) The feedback loop 

originated from preliminary tracking results is used to help preserve 

segmented foreground when object(s) share color similarity or 

chromaticity similarity with background. (ii) The region-level 

feedback based on multiple kernels is used to reduce noise, which 

can be derived from the kernel histograms built in multiple kernels 

tracking. (iii) Effective penalty computation is introduced for 

shadow removal based on the distance between chromaticity 

histograms of foreground and background.  

The rest of this paper proceeds by introducing related work in 

Section 2. Section 3 presents the proposed MAST approach for 

robust object tracking. Experimental results and discussions are 

covered in Section 4. In the end, Section 5 concludes this paper. 

 

2. RELATED WORK 

 

The performance of many object tracking approaches [1]-[4] is 

highly dependent on foreground segmentation mask. Zhao et al. [1] 

propose an object detection and tracking system based on image 

likelihood model. They use head detection and 3D human models to 

detect objects from foreground segmentation mask. Chu et al. [2]-

[3] generalize the constrained multiple-kernel (CMK) tracking that 

employs projected gradient constrained search to find the best match 

of the tracked target with occlusion. They further improve the 

computational efficiency of this method by combining CMK 

tracking with Kalman filtering, whose prediction of states is made 

based on the position, velocity and size of the foreground blobs [4]. 

If the segmentation stage fails, the subsequent tracking of objects 

across frames will also be adversely affected.  

There are many other works concerning adaptation in object 

segmentation. The pixel-based adaptive segmenter (PBAS) [5] is an 

example of foreground segmentation using feedback from pixel-

level background dynamics. The SuBSENSE method [6], as an 

improvement to PBAS, allows increased local sensitivity, especially 

for regions with intermittent dynamic variations. None of these 

methods takes advantage of the feedback from preliminary tracking 

to further improve the segmentation and update tracking 

performance. Furthermore, the threshold decision mechanisms used 

in these methods are all in pixel level, while our method is in region 

level. Finally, our proposed method is the only one taking into 

account the adaptation for shadow removal, since shadow is also a 

key factor in object segmentation. 

 
3. ADAPTIVE SEGMENTATION FOR TRACKING 

 

Figure 1 shows the overview flow chart of our proposed MAST 

scheme, where we assume that the modeled background is known 

(or can be pre-estimated) in a static camera surveillance system. The 

GMM background model is adopted here, but it can be replaced by 

other background models. Each module of the flow chart will be 

elaborated next. 

 

3.1. General Segmentation and Tracking 
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To extract foreground objects, we perform background subtraction 

first. Otsu’s thresholding method [7] is adopted to dynamically 

determine the global threshold for each color channel. The 

thresholding results are combined through intersection. Otsu’s 

method is known for its simplicity and computation efficiency.   

Afterwards, we remove the detected shadows in foreground 

mask based on YCbCr color space using the shadow indicator 

calculated as,  

       SInd(x, y) =

{
 
 

 
 1,                (α ≤ Y

I(x, y) ∕ YB(x, y) ≤ β)

               ∧ (|CbI(x, y)-CbB(x, y)| ≤ τCb)

                 ∧ (|CrI(x, y)-CrB(x, y)| ≤ τCr)

0,                                                   otherwise

,    (1) 

where the superscript I denotes the pixel in input image, and B for 

background pixel. α, β, τCb, and τCr are the parameters set for 

different color channels. Since these threshold values are set for the 

whole image, errors are likely to occur in some regions. For instance, 

if the chromaticity (represented by the Cb and Cr channels) of a 

portion of the object is similar to the background, they will be easily 

recognized as shadow. This kind of methods based on separation of 

chromaticity and brightness has been widely used in many 

segmentation approaches, such as [8]-[9], for its simplicity and 

effectiveness. To remove small noise and connect broken parts in 

foreground mask, morphological operations such as closing, 

opening, filling gaps are further applied after segmentation. Then, 

the foreground mask is used as an input to the tracking stage. 

The adopted object tracking algorithm, which combines 

Kalman filtering and CMK tracking [4], can achieve robust 

performance against occlusion and enjoy the benefit of reusing 

kernel histograms. Multiple kernels are used to represent several 

parts of each object, so that when one or some of the kernels are 

occluded, we can put larger  weights to other observable kernels and 

link all the kernels based on some predefined constraints [10]-[12]. 

The idea here is to perform Kalman filter prediction first for each 

object that has been tracked in the previous frame, and then 

determine whether the object is under occlusion based on similarity 

of kernel histograms. If not, we choose the segmentation result as 

the measurement to continue the Kalman filtering. Otherwise, CMK 

tracking is used to get multiple measurements which will be handled 

by probabilistic data association. The tracking results are 

represented as bounding boxes around the tracked objects at their 

positions, as is shown in Figure 2.  

To ensure robust tracking performance, some constraints are 

imposed to prevent sudden changes of the bounding boxes caused 

by segmentation failure. The constraints include limited size-change 

ratio, width-change ratio, and height-change ratio of foreground 

blobs. This step is important for adaptive segmentation, because it 

allows some parts of object(s) merged into background (either due 

to similar color with background or due to shadowing) to be 

temporarily included in the preliminary tracking result. Hence, some 

of the missing parts could be recovered through a feedback loop. 

 

3.2. Similarity Computation and Feedback Loop 

 

The key innovation behind our proposed scheme is how we use 

the feedback loop to optimize segmentation results by adaptively 

controlling the segmentation thresholds. At first, multiple (elliptical 

shaped) kernels are generated inside each tracked bounding box 

based on predefined spatial layout. According to the investigation in 

[2]-[4],[10] and our own experiments, the spatial layouts of two 

kernels and four kernels (see Figure 3) produce better results. In all 

of our experiments, we use only the two kernels for human objects.  

The next step is to construct two separate kernel histograms for 

 
Figure 1. Overview flow chart of the proposed system. 

 

 
(a)                            (b)                             (c) 

Figure 2. Segmentation and tracking results for the video sequence 

backdoor at frame #1840 in the CVPR 2014 Change Detection 

dataset [13]. (a) Background subtraction (white for extracted 

foreground and black for background). (b) Shadow detection and 

removal (gray for detected shadow to be removed). (c) Tracking 

result (bounding boxes in red). 

 

each kernel. Using the same color space as in segmentation, the 

YCbCr histogram is first built to measure color similarity between 

current frame and background for adaptive background subtraction. 

The 2nd kernel histogram is constructed by using only the Cb and Cr 

channels to measure the chromaticity similarity for adaptive shadow 

removal. We use Gaussian kernel function as the weighting for 

building the kernel histograms, as given in (2), 

                          𝑤 =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒
−
(𝑥−𝑥𝑐)

2𝜎𝑥
2 𝑒

−
(𝑦−𝑦𝑐)

2𝜎𝑦
2

,                      (2) 

where xc  and yc denote the center coordinate of the kernel, while σx 

and σy are set as half of the width and height of the kernel 

respectively. Kernel histogram is used because the area of the object 

usually only covers the region around the center of the kernel, which 

is the part we want to emphasize. 

The color similarity and chromaticity similarity are computed 

by the reciprocals of Bhattacharyya distances [10] between the 

corresponding kernel histograms, i.e., 

                    𝑐𝑜𝑙𝑜𝑟𝑆𝑖𝑚𝑖 =
1

∑√ℎ𝑖𝑠𝑡𝑌𝐶𝑏𝐶𝑟
𝐼 (𝑥,𝑦)∙ℎ𝑖𝑠𝑡𝑌𝐶𝑏𝐶𝑟

𝐵 (𝑥,𝑦)
,                (3) 

                    𝑐ℎ𝑟𝑜𝑚𝑆𝑖𝑚𝑖 =
1

∑√ℎ𝑖𝑠𝑡𝐶𝑏𝐶𝑟
𝐼 (𝑥,𝑦)∙ℎ𝑖𝑠𝑡𝐶𝑏𝐶𝑟

𝐵 (𝑥,𝑦)
,                (4) 

where both of them are normalized to 0 to 1.  

Under the consideration of computation efficiency and 

smoothness of segmentation, we design a fuzzy Gaussian penalty 

weighting (pw) function (5), as shown in Figure 4, for adaptively 

changing the thresholds in segmentation, 
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(a)                      (b) 

Figure 3. Spatial layouts of multiple kernels inside the bounding 

box. Black solid rectangles are bounding boxes and dashed ellipses 

represent the bounded objects. Red ellipses indicate the locations 

of kernels. (a) Two kernels. (b) Four kernels.  

 

 
Figure 4. The fuzzy Gaussian penalty weighting (pw) function for 

adaptively changing the thresholds in segmentation. 
 

     𝑝𝑤 = {𝑒
−

(𝑠𝑖𝑚𝑖−1.0)2

2∙[(1.0−𝑠𝑖𝑚𝑖𝑇ℎ𝑟𝑒𝑠)/3]2, 𝑠𝑖𝑚𝑖𝑇ℎ𝑟𝑒𝑠 ≤ 𝑠𝑖𝑚𝑖 < 𝑠𝑖𝑚𝑖𝑀𝑎𝑥
0,                                                                         otherwise

, (5) 

where simi corresponds to the color similarity or chromaticity 

similarity. The simiThres is set as a threshold for the corresponding 

similarity. If the similarity is lower than this threshold, the general 

segmentation is considered to be successful, and thus adaptive 

segmentation will not be triggered. Otherwise, the Otsu’s threshold 

used in background subtraction or the chromaticity thresholds τCb 

and τCr in shadow removal will be penalized by multiplying (1 - 
pw). The adaptive segmentation is then conducted locally inside the 

corresponding kernel region with the new threshold values. Besides 

failure in segmentation, the tracking is also likely to fail when the 

bounding box shifts to a background area, therefore we need to set 

an upper limit for the similarity (simiMax). When the simi is beyond 

this limit, the adaptive segmentation will not be conducted either, 

and thus we can avoid propagation of tracking errors. Moreover, to 

recover possible foreground outside the kernel, the kernel region to 

be re-segmented is expanded by a factor of (1 + pw/2). In 

summary, higher color/chromaticity similarity will result in smaller 

thresholds for segmentation inside a further expanded kernel region, 

and thus more pixels around the tracked objects will be classified as 

foreground. The final segmentation result is generated by a union 

combination of first segmentation in the whole frame and local 

adaptive segmentation in each chosen kernel region.  

It should be noted that in the preliminary tracking stage, only 

Kalman filter prediction and CMK tracking are conducted to derive 

the positions of bounding boxes. After adaptive segmentation, the 

tracking algorithm is called again to create final tracking result from 

the optimized segmentation result with the Kalman filter updated. 

 

4. EXPERIMENTAL RESULTS 

 

Our experimental results include evaluation on the performance of 

both segmentation and tracking. Compared with the state-of-the-art 

algorithms, we have tested our proposed method on benchmark 

datasets and our own videos to emphasize the object merging issue.  

 

4.1. Experiment Setting 

                                                 
1 The performance measurement code and the foreground images of the 
state-of-the-art algorithms are provided on [13]. Moreover, the results in 

The parameters in shadow removal, α, β, τCb, and τCr, are 

empirically set as 0.6, 0.8, 12, and 12 respectively. The values of 

simiThres for color similarity and chromaticity similarity are also 

empirically chosen to be 0.3 and 0.4 respectively. Both of the 
simiMax’s in (5) are set to 0.72. After all, the limits for size-change, 

width-change and height-change ratios of bounding boxes are given 

by 0.1, 0.15 and 0.15 respectively. If the boxes are unchanged for 

more than 2 seconds, there might be some errors, and thus we will 

let them follow the corresponding foreground blobs immediately. 

 

4.2. Results on Benchmark Datasets 

 

For the evaluation of segmentation performance, we have applied 

the proposed MAST system to the CVPR 2014 Change Detection 

dataset [13]. Among all the categories in the dataset, we choose the 

shadow category to test our proposed scheme mainly for object 

tracking under shadowing scenarios.  The comparison results with 

some of the state-of-the-art algorithms are shown in Table I 1 . 

Among all the methods in this scenario, the ranking of our 

performance based on F-Measure is in the middle. It is worthwhile 

to observe that our object segmentation method can achieve such a 

good ranking in the change detection dataset, since most of other 

approaches are based on sophisticated pixel-level statistical models. 

Rather, our method only depends on a simple thresholding algorithm 

with feedback from region-level similarity of histograms. The 

reason that we cannot reach the top-level performance is our 

intention to preserve more foreground than the ground truth. This is 

necessary for supporting robust tracking.  

We have also evaluated our tracking performance using two 

video sequences, TwoEnterShop2cor and ThreePastShop2cor, in 

the CAVIAR Dataset [17].  We manually pick the targets that are 

occluded during their movements. The comparison of average errors 

on these sequences are given in Table II. The error calculation is the 

same as that in [2]-[4]. It is defined by the distance in pixel between 

the centers of mass of experimental result and the ground truth. The 

method in [4] uses the general segmentation and tracking 

approaches mentioned in Section 3.1 with the same parameters 

setting as ours. We also make a comparison with the method in [6] 

combined with CMK tracking to show the advantage of our system 

in supporting robust tracking. Their default parameters are adopted 

in change detection, and we use the same parameters for CMK 

tracking. It can be seen that the MAST system improves the tracking 

performance of the original system that has no feedback loop, and it 

can generate more robust foreground mask for tracking. It both 

handles occlusion well and prevents object merging.  

Figure 5 shows four representative frames of the tracking 

results using these three methods. It shows that our system is more 

robust against drifting when occlusion occurs. Also, the tracking is 

more accurate when the problem of object merging occurs. 

 

4.3. Results on Our Own Video Sequences 

 

To emphasize our advantage in handling object segmentation and 

tracking when object(s) have similar color and/or chromaticity with 

background, we recorded our own video sequences, with resolution 

of 640x360, in which pedestrians walked around a background area 

that has similar color and chromaticity with their clothing. Our 

segmentation and tracking results are provided in Tables III and IV 

respectively. The segmentation results of MAST and the method in  

Table I is different from that on [13] because the code only measures a part 
of the video frames.  
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Table I. Quantitative comparison of MAST system to several state-

of-the-art change detection methods on five measures on the 

shadow scenario of CVPR 2014 Change Detection challenge [13] 

 Recall Spec FPR FNR F 

SuBSENSE [6] 0.9419 0.9920 0.0080 0.0581 0.8986 

IUTIS-3 [14] 0.9478 0.9914 0.0086 0.0522 0.8984 

GMM [15] 0.7960 0.9871 0.0129 0.2040 0.7370 

CP3 [16] 0.7840 0.9832 0.0168 0.2160 0.7037 

MAST 0.8679 0.9864 0.0136 0.1321 0.7884 

 

Table II. Comparison of average errors of tracking in terms of 

pixels on two video sequences in CAVIAR Dataset [17] 

 MAST Method in [4] 

Method in [6] with 

CMK tracking 

video #1 10.06 26.72 17.27 

video #2 9.75 10.74 14.07 

Overall 10.18 18.73 15.67 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Tracking results on two video sequences in CAVIAR 

Dataset [17] by (a) the proposed system. (b) Method in [4]. (c) 

Method in [6] combined with CMK tracking. Frames #755 and 

#2175 for video #1: TwoEnterShop2cor, and frames #642 and 

#794 for video #2: ThreePastShop2cor. 

 

[4] with respect to F-Measure score are very close. But our method 

has significantly higher recall rate, which implies that MAST tends 

to preserve more foreground for robust object tracking. The 

performance of method in [6] is less robust than ours, especially 

when objects go into background areas with similar color. The 

superiority of MAST in tracking objects under object merging is 

clearly validated in Table IV. Apart from the comparison of average 

errors, the other two methods both lose the targets twice in similar 

background area, while ours can successfully track all objects.  

The tracking results in four representative frames are 

demonstrated in Figure 6. Since the segmentation results by the 

methods in [4] and [6] lose lots of foreground belonging to the object 

in similar-color background area, it leads to failures in the tracking 

stage such as missing the target or bounding only part of the target. 

The videos of corresponding complete simulation results are made 

available in http://allison.ee.washington.edu/thomas/mast/. 

 

5. CONCLUSION 

Table III. Comparison of segmentation performance on five 

measures on our two video sequences (video #1 and video #2) 

 Recall Spec FPR FNR F 

#1-MAST 0.8815 0.9959 0.0041 0.1185 0.8861 

#1-Method in [4] 0.8588 0.9974 0.0026 0.1412 0.8910 

#1-Method in [6] 0.8569 0.9896 0.0104 0.1431 0.8033 

#2-MAST 0.7727 0.9948 0.0052 0.2272 0.7916 

#2-Method in [4] 0.7508 0.9965 0.0034 0.2492 0.8026 

#2-Method in [6] 0.8938 0.9934 0.0066 0.1062 0.8424 

 

Table IV. Comparison of average errors of tracking in terms of 

pixels on our two video sequences 

 MAST Method in [4] 

Method in [6] with 

CMK tracking 

video #1 17.88 18.26 18.90 

video #2 10.30 16.10 15.95 

Overall 14.09 17.18 17.43 

   

 
(a) 

 
(b) 

 
(c) 

Figure 6. Tracking results on our video sequences by using (a) 

MAST system. (b) Method in [4]. (c) Method in [6] combined with 

CMK tracking. Frame #319 and frame #342 for video #1, and 

frame #329 and frame #611 for video #2. 

 

In this paper, we propose an adaptive segmentation and tracking 

system based on multiple kernels. The purpose is to robustly track 

objects when they have similar color or chromaticity with the 

background area. It applies general segmentation and tracking 

algorithms first. And then kernel histograms are constructed inside 

each kernel to find their color similarity and chromaticity similarity. 

The calculated penalty weight is utilized to penalize the thresholds 

in segmentation and determine the expansion ratio of the 

corresponding kernel region to redo segmentation. The tracking 

algorithm is called again to generate the final output using the 

adaptive segmentation result. From experiments on CVPR 2014 

Change Detection dataset, CAVIAR Dataset and our video 

sequences, it is shown that the proposed system can improve the 

performance of tracking while keeping fine segmentation result 

especially when dealing with object merging problem. For future 

development, since this method is always trying to preserve the 

foreground of detected objects, it will be helpful to add an object 

detector into the system to prevent ghosts. 
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