
DETECTING OCCLUSION FROM COLOR INFORMATION TO IMPROVE VISUAL
TRACKING

Stephen Siena and B.V.K. Vijaya Kumar

Carnegie Mellon University
Electrical and Computer Engineering

5000 Forbes Avenue, Pittsburgh, PA, 15213

ABSTRACT

Visual tracking in unconstrained environments often involves
following an object that exhibits a number of appearance
changes from factors such as scale change, rotation, and il-
lumination. Effective tracking requires adapting a tracker
to the object’s changing appearance over time. When a tar-
get becomes occluded by other objects in the scene, a naive
tracker may end up learning the appearance of the occluding
object. Our work introduces a method of detecting occlusion
by considering the color profile of the target to prevent in-
appropriate tracker updates while the target is occluded. We
show improved overlap and central location precision with
three visual trackers when adding our hue-based occlusion
detection to each tracking system.

Index Terms— Tracking, color, correlation filters, occlu-
sion

1. INTRODUCTION

Visual tracking – the task of following a target in video – is
an important computer vision problem with numerous real-
world applications. As tracking performance has improved
through research advances, the difficulty of problems being
considered has also increased. A very simple yet challenging
paradigm in visual tracking is to track a target in an uncon-
strained environment based on an initial single image of that
target. Target appearance can change due to factors such as
scale and illumination changes, object rotations, or a target
going out of view or getting occluded by other objects.

When a tracker must successfully operate across a wide
range of videos without any calibration for individual se-
quences, trade-offs are necessary. Changes to a tracker may
help on 20% of videos while harming the performance on
10% of other videos; this is to be expected and is largely
unavoidable. One particular trade-off which must be made is
that between a tracker’s adaptability and a tracker’s stability
relative to noise or other objects in the scene. If a target
undergoes quick changes, it makes most sense for a tracker
to update its model rapidly to adapt to the target’s shifting
appearance. In other videos, the target may be occluded

for a stretch of time, during which the same tracker with an
aggressive adaptation rate may end up quickly learning the
appearance of the occluding object and drift off the original
target, even as it reappears.

Correlation filters (CFs) have become a popular approach
for the challenging one-shot visual tracking problem[1]. CFs
can be computed efficiently in the Fourier domain, often al-
lowing correlation tracking to run faster than real time. Ad-
ditionally, the training (and retraining) of CFs implicitly in-
cludes the area surrounding the target as negative training ex-
amples, thus giving the tracker more discriminative power.
The MOSSE filter [2] originally proposed a CF design that al-
lowed for efficient retraining with each new frame processed
in a tracking sequence. More recently, the CSK tracker [3]
presented an efficient kernelized correlation tracker. The KCF
[4] and ACT [5] trackers extend correlation trackers to multi-
channel features instead of only using intensity features. The
DSST tracker [6] added an additional 1D CF to estimate a tar-
get’s scale. All these correlation trackers improve upon pre-
vious works, but all still suffer from the problem of a fixed
learning rate across all videos. Because of this, they are all
prone to locking on to an occluded object and losing track of
the actual target if the issue is not addressed.

Some trackers try to handle the problem of lost tracks by
performing redetection during the course of tracking. The
TLD tracker [7] operates with a tracker that provides high-
confidence training examples to a detection model, and the
tracking and detection models work together to correct the fi-
nal tracking output. In correlation tracking, the LCT tracker
[8] runs a random fern detector when the correlation tracker
model outputs an estimate with low confidence. Both the
TLD and LCT trackers work to recorrect tracking results with
low confidence, but neither specifically address or estimate if
the target is occluded. The CCT tracker [9] has a tracking
model and a detection model, and suggests that the target is
occluded when the two models disagree entirely. When this
decision is made, the learning rate of the tracking model is
reduced by a factor of 10. The intuition is that while a tracker
may estimate the target to be where an occluding object is, a
detector that runs independent of the target’s previously esti-

1110978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

mated location will not. While this is a valid approach, the
CCT tracker is not directly trying to detect or estimate the
presence of occlusion by the content of the target region esti-
mated by the tracker, but rather it is estimating occlusion by
measuring the disagreement between two models.

In contrast, this work proposes a technique for inspect-
ing the target region estimated by an arbitrary tracker, and
then adapting the tracker’s learning rate based on that infor-
mation. We propose that easily computed color features will
be a powerful indicator of occlusion in color videos, and by
utilizing those features we can modify the tracker’s learning
rate to avoid the problem of adapting to the appearance of an
occluding object.

2. TRACKING-BY-DETECTION FRAMEWORK

The objective of visual tracking is to follow a target as it
moves during a video sequence. Oftentimes only the bound-
ing box in the initial frame is provided to the tracking system.
Trackers must learn the appearance of the target from a single
training example, and detect and adapt to a changing target
appearance through the rest of the video.

Correlation tracking has been frequently used for the
problem of single-frame training, because it can implicitly
learn the appearance of the target while using the surround-
ings as negative training examples, and this process can be
done efficiently in the Fourier domain. We will be illustrating
our occlusion detection on three publicly available correlation
trackers: the CSK [3] and KCF [4] trackers, which estimate
only the central location of the target at a fixed scale, and the
DSST [6] tracker, which attempts to estimate the scale as well
as the central location of a target. All three trackers follow the
same fundamental process. After learning the appearance of
the target on the first frame, the tracker detects the most likely
location (and in the case of DSST, the most likely scale) of
the target in the next frame and retrains the model with the
new, imperfect detection. Retraining is done by linear inter-
polation, with a small weight given to the new information
relative to the previously learned model (the three trackers
give between 2-7.5% weight to the new frame).

It is important to note that the model is updating every
frame; there is no measure of confidence or tracking qual-
ity used to decide if the model should be updated. In frames
where the object is occluded and there is no “correct” loca-
tion, the model ends up learning the appearance of something
other than the original target. In a few frames, this may only
degrade the quality of the tracker, but given a long enough se-
ries of frames with occlusion, the model will drift off of the
original target and begin to track the occluding object.

3. OCCLUSION DETECTION FRAMEWORK

As mentioned in Sec. 2, many correlation trackers do not
adapt the learning rate according to any feedback from the

Hue

0° 60° 120° 180° 240° 300° 360°

F
re

q
u
e
n
c
y

0

0.003

0.006

0.009

0.012

0.015

0.018

Hue Frequencies

Target

Surroundings

Fig. 1: Portion of initial frame of ‘lemming’ track with target
shown (left), and probability distribution of the hues found in
the initial frame (right). The two largest peaks correspond to
brown and blue hues.

tracking system. In practice, this is difficult; lower confidence
in the tracking results may be the result of occlusion, but it
may also indicate that the appearance of the target is chang-
ing rapidly. In the case of occlusion it would be desirable
to reduce or completely stop model adaptation, whereas in-
creasing the rate of model adaptation would be desirable in
the case of a rapidly changing target appearance. Feedback
from correlation trackers makes distinguishing between these
two scenarios very difficult, which motivates the need for a
separate way of identifying occlusion.

The video tracking problem consists of tracking objects
with difficulties including in-plane and out-of-plane rotations,
scale changes, and illumination variation [1]. Given all the
possible changes a target may undergo after the tracker is ini-
tialized with a single training image, we suggest that texture
features will not be sufficient in distinguishing between an
occluding object and a rapidly changing target appearance.
Rather, we propose that the hue profile of a target will remain
static over the course of a short video, and if it is distinct from
the target’s surroundings, will discriminate between a tracker
following the target and a tracker that has lost the target be-
hind an occluding object. When occlusion has been detected,
the target can halt model adaptation until the object reappears.

3.1. Training

Just as the tracker is initialized on the single ground truth
frame available, the target’s hue profile is also learned solely
on the first frame. Given a RGB video with an initial bound-
ing box, the target and surroundings are converted from RGB
values to hue values, according to the transformation from
RGB to HSV color space. This transformation is chosen be-
cause hue values capture the pigment of the object better than
any individual RGB value (‘saturation’ and ‘value’ capture
the intensity and brightness of the pigment, which are prone
to change due to shadows or other illumination changes).

1111

Fig. 2: Target regions based on ground truth labels in three
‘lemming’ track frames. Frame 296 (left) has OSraw =
−0.73, while the occluded target in frame 338 (middle) has
OSraw = 1.13. Frame 971 (right) has OSraw = −1.88.

Figure 1 shows a portion of the first frame, as well as the
probability distribution of the hues found in both the target
region and surrounding region. These distinct hue probability
distributions serve as the cue we use to identify occlusions.
Because the hues from a single frame will provide a small and
noisy sample, we smooth the probabilities with a Gaussian
filter. From these distributions we compute the log-likelihood
that a given hue belongs to the target as

L(target|H) = log

(
P (H|target) + ε

P (H|background) + ε

)
(1)

where H denotes the hue value and ε is a small value to com-
pensate for the large range of hues not present in the initial
frame. In all our experiments we set ε = 10−4.

3.2. Occlusion Detection

The scope of our occlusion detection is solely to adjust the
learning rate of a tracking system. In each frame, the tracker
will find the most likely location (and possibly the most likely
scale). The target location in the nth frame can be denoted as
(xn, yn, wn, hn), where (xn, yn) represent the top-left corner
of the rectangular region, and (wn, hn) represent the width
and height of the region in the nth frame. We compute a raw
occlusion score (OS) by averaging the hue likelihoods of the
pixels in that region as follows:

OSraw(n) = −
∑xn+wn

i=xn

∑yn+hn

j=yn
L (target|H(i, j))

wnhn
(2)

Examples of high and low raw occlusion scores shown in Fig-
ure 2 demonstrate how the scores are easy to interpret.

Beyond learning the likelihood of hues belonging to the
target as shown in Eq. 1, we also use the initial frame to
normalize occlusion scores of subsequent frames as follows:

OS(n) = OSraw(n)−OSraw(1) (3)

Normalizing OS(n) by the raw occlusion score from the
ground truth frame compensates for differences between tar-
gets from different sequences and makes it easier to pick a
single decision threshold across all videos.

Once the OS(n) is calculated for a given tracking result,
the decision to change the learning rate or not must be made.
In our experiments, we use a very simple scheme. If OS(n)
is higher than some threshold, the learning rate is set to zero
and the tracker model will not be updated. If OS(n) is below
the threshold, the learning rate of the tracker remains at its
original setting.

4. EXPERIMENTAL SETUP

We demonstrate our hue-based occlusion detection on a sub-
set of the CVPR 2013 Visual Tracker Benchmark [1]. We use
a subset of 20 video sequences containing 21 targets. This
subset contains all RGB sequences containing occlusion.

All three trackers tested [3, 4, 6] are unmodified from
their available open-source versions, with the exception of
the occlusion detection that can affect the learning rate in a
given frame. All experiments are performed on an Intel(R)
Core(TM) i5-4210U CPU using a single core at 1.70 GHz
with 8G RAM. The computation spent on occlusion detec-
tion results in a moderate decrease in speed across the three
trackers. The CSK tracker moves from 168 to 127 frames per
second (FPS), the KCF tracker moves from 118 to 102 FPS,
and the DSST tracker drops slightly from 20.8 to 19.3 FPS.

The occlusion detection has a different threshold for each
tracker, but this value is constant across all videos for the
given tracker. With different feature descriptors, different
components, and most importantly different learning rates be-
tween the three trackers, tuning the occlusion detection sepa-
rately for each one is not unexpected.

5. RESULTS

Overall results showing the impact of our hue based occlu-
sion detection can be seen in Figure 3. There are noticeable
improvements when using the CSK and DSST trackers, and
a small improvement when using the KCF tracker. Given the
small reduction in tracking speed when using the occlusion
detection, the moderate improvements to tracking quality ap-
pear to be a favorable trade-off.

A strictly quantitative analysis of tracking performance
can provide an incomplete picture of the improvements or
problems introduced by our occlusion detector. The quantita-
tive results shown in Figure 3 are calculated on a per frame ba-
sis for each sequence. This means that successfully handling
occlusion (or any challenging factor) at the end of a sequence
will be given significantly less weight than successfully han-
dling an occlusion present at the beginning of a video.

Table 1 shows tallies of human-labeled “errors,” which
can simply be understood as instances where the tracker com-

1112

Overlap threshold

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n
 R

a
te

0

0.2

0.4

0.6

0.8

Overlap Success Rate

CSK [0.340]
CSK w/ Occ. [0.441]
KCF [0.490]
KCF w/ Occ. [0.509]
DSST [0.468]
DSST w/ Occ. [0.491]

Location error threshold

0 10 20 30 40 50

P
re

c
is

io
n

 R
a

te

0.2

0.4

0.6

Distance Precision Rate

CSK [0.473]
CSK w/ Occ. [0.610]
KCF [0.703]
KCF w/ Occ. [0.708]
DSST [0.628]
DSST w/ Occ. [0.664]

Fig. 3: Overlap success and central location precision plots
on subset of benchmark dataset [1]. Results are from 21 se-
quences with color images and labeled occlusions. Numbers
in bracket refer to area under the curve and 20 pixel error
threshold precision, respectively.

Tracker Tracking Errors
Total Corrected Introduced

CSK [3] 17 4 (24%) 1
KCF [4] 11 3 (27%) 1

DSST [6] 11 4 (36%) 1
Total 39 11 (28%) 3

Table 1: Qualitative results on 21 targets from 20 tracks with
RGB images and tagged as having occlusion. Total errors
refers to the baseline tracking performance, while the “fixed”
and “introduced” columns represent errors that are corrected
or brought on by use of the hue-based occlusion detection.

pletely loses the target. After a tracker makes one of these
mistakes, any overlap with the target, or the exact central lo-
cation error should be considered purely incidental. In con-
trast, a tracker that drifts of the center of the target, but still
follows the target’s movements in the sequence would not be
labeled an error, despite producing suboptimal performance.

Table 1 shows that across the three trackers used, there
are 39 significant errors in the sequences tested. A majority
of these mistakes are directly tied to occlusions in these se-
quences, but the tally includes errors from all challenging fac-
tors (examples of these are found in the ‘ironman’ and ‘ma-
trix’ sequences). Of these 39 errors, 11 are corrected with the
hue-based occlusion detection. Of these 11 corrected errors,
10 can be attributed to occlusion. In contrast, the addition of
the occlusion detection only introduces 3 errors into the track-
ing results. On a varied set of sequences where any change to
the tracking system can expect to result in gains and losses
on different videos, an 11-3 tradeoff is very encouraging for
such a simple scheme of finding occlusion and changing a
tracker’s learning rate. Figure 4 shows three examples of er-
rors that were corrected with the addition of the occlusion
detection, and one of the three errors that were introduced (in
fact, two of the three errors introduced were on the ‘skating1’
sequence).

(a) ‘jogging’ sequence, CSK tracker

(b) ‘lemming’ sequence, KCF tracker

(c) ‘girl’ sequence, DSST tracker

(d) ‘skating1’ sequence, KCF tracker

Fig. 4: Examples of corrections (a-c) due to occlusion detec-
tion, and one error (d). Red denotes original tracker and green
denotes occlusion detection is included. Note the change in
the stage lighting in the ‘skating1’ sequence.

6. CONCLUSIONS

Our work introduces a simple yet effective process for iden-
tifying occlusion of tracking targets in RGB videos. Despite
the simplicity of the technique and the fact that it is only used
to alter the learning rates of the tracker, the hue-based ap-
proach shows quantitative improvement on all 3 correlation
trackers tested and shows that many errors are corrected upon
inspection of individual tracking outputs. These performance
gains come at very little cost to the tracking speed of each
system.

Extending the use of the hue-based occlusion detection
is worth exploration. The importance of pixel hues can be
weighted by the spatial location within a bounding box, or by
the saturation of the particular hue. Additionally, while we
only use the occlusion detection to affect the tracker’s learn-
ing rate, the promising results show that it may be worth in-
vestigating its use in estimating the track itself.

1113

7. REFERENCES

[1] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, “Online
object tracking: A benchmark,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

[2] David S Bolme, J Ross Beveridge, Bruce Draper,
Yui Man Lui, et al., “Visual object tracking using adap-
tive correlation filters,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, 2010,
pp. 2544–2550.

[3] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista,
“Exploiting the circulant structure of tracking-by-
detection with kernels,” in proceedings of the European
Conference on Computer Vision, 2012.

[4] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista,
“High-speed tracking with kernelized correlation filters,”
Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 2015.

[5] Martin Danelljan, Fahad Shahbaz Khan, Michael Fels-
berg, and Joost van de Weijer, “Adaptive color attributes
for real-time visual tracking,” in Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on,
2014, pp. 1090–1097.

[6] Martin Danelljan, Gustav Häger, Fahad Khan, and
Michael Felsberg, “Accurate scale estimation for robust
visual tracking,” in British Machine Vision Conference,
Nottingham, September 1-5, 2014, 2014.

[7] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas,
“Tracking-learning-detection,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 34, no. 7,
pp. 1409–1422, 2012.

[8] Chao Ma et al., “Long-term correlation tracking,” in
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2015.

[9] Guibo Zhu, Jinqiao Wang, Yi Wu, and Hanqing Lu, “Col-
laborative correlation tracking,” in Proceedings of the
British Machine Vision Conference (BMVC), September
2015, pp. 184.1–184.12.

1114

