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ABSTRACT
This paper presents a tracking method which decouples track-
ing process into translation and scale estimation steps. A
coarse estimation step in translation is implemented with par-
ticle filter first. Then, a two layers of correlation filters is
proposed to robustly estimate object variation in translation
and scale accurately. The appearance of object is divided in-
to several local blocks. Each block is a basic unit for da-
ta updating and it is capable of accurately locating the sub-
context of target based on the trained block filters. A local
weight vector is developed to structurally and flexibly formu-
late spatial-temporal transform feature map with online learn-
ing framework. The block-updated filters are assembled to a
final tracker for the accurate translation estimation. To handle
the adaptive scale variation, a sample pyramid based track-
er is built to estimate the scale accurately. Experiments on
the public benchmark demonstrate the advantage of proposed
algorithm over the state-of-the-art approaches.

Index Terms— Visual tracking, Fourier transform, Com-
puter vision

1. INTRODUCTION

Visual tracking is one of the essential tasks for intelligent
visual analysis since it has been widely used in visual surveil-
lance, human computer interaction, motion understanding
and intelligent transportation system, etc. A fruitful liter-
ature has been reported with promising results in tracking
area[1, 2, 3, 4]. However, although much progress has been
made in recent years, the problems are still remained to de-
velop a robust tracking algorithm in complex and dynamic
scenes. Challenges include appearance changes of the objec-
t, pos and illumination variations, occlusions and significant
viewpoint changes, etc. To handle difficult tracking scenarios,
lots of online updating tracking methods have been developed
over the last few years.

The existing tracking algorithms can be roughly catego-
rized into two classes: generative models and discriminative
ones. Generative models formulate the tracking problem as
feature matching by searching for the image region that best

matches a template or an appearance model [5, 6, 7, 8]. These
methods perform well when there is no dramatic appearance
change and when the background is not complex. Discrimi-
native approaches formulate visual tracking as a binary clas-
sification problem which aims to design a classifier for distin-
guishing the target from the background. From the framework
of classifier level, early discriminative methods most rely on
the offline trained classifier for online tracking applications
[9]. Since the classifier is trained offline, these kinds of meth-
ods are hard to be extended to more complex scenarios with
appearance variations and occlusion. To accommodate the
appearance variations of target, online trained classifiers are
introduced to model the varied objects [10, 11].

This paper proposes a novel tracker with two layers of
correlation filters, which divides tracking process in struc-
tural appearance coding based translation and sample pyra-
mid based scale estimation for a robust visual tracking. The
paper begins by reviewing the relevant work in the Section 2.
Section 3 presents the details of correlation filter foundation,
structural spatio-temporal transform framework and sample
pyramid for scale estimation. Section 4 gives the experiments
and performance evaluation of our proposed algorithm. Fi-
nally, we conclude this paper in Section 5.

2. RELATED WORK

Correlation filters have been widely used in signal process-
ing domain. They have been successfully extended to com-
puter vision for visual detection and tracking recently due
to their promising performance with computational efficiency
[12, 13]. They take advantage of the benefit that convolu-
tion of images in spatial domain is equivalent to an element-
wise product in the Fourier domain. Some researches related
to correlation visual application has been reported recently.
Heriques et al. present to use correlation filters in a kernel
space with the CSK method [14] which achieves the highest
speed in a recent benchmark [15]. The CSK method builds
on illumination intensity features and is further enhanced by
adopting HOG features in the KCF algorithm [16]. Zhang et
al. [17] make use of context information into filter learning

1105978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



Fig. 1: The schematic diagram of structural correlational tracker.

and model the scale change based on consecutive correlation
response. These correlation trackers are based on the holistic
model. They are susceptible to drifting and less effective to
handle long-term occlusion and out-of-view problems.

Structural framework aims to integrate the spatial infor-
mation of appearance of object for a better tracking results.
In [18], a local sparse representation scheme is employed to
model the target appearance and then represent the basis dis-
tribution of target with the sparse coding histogram. Because
of the structural appearance representation, this method per-
forms well in handling the partial occlusion. Hare et al. [19]
adopt a kernelled structured output support vector machine
for adaptive online learning based object tracking. More re-
cently, Yan et al. [20] present a structured partial least squares
based appearance model for object tracking which is not only
able to discriminate the target from the background but also
able to tolerate the appearance variations due to the structured
system updating framework.

The main contributions of this paper are listed as fol-
lows. First, a structural spatio-temporal appearance transform
framework is presented for adaptive online learning based vi-
sual tracking. Coupling of spatial structure information, local
patches corruption will not affect the entire appearance model
response. Second, a coarse to fine translation estimation in-
tegrated with two layers of tracking framework is formulated
for the accurate translation and scale estimation. Third, a
sample pyramid is proposed for effective scale estimation.
Experiments verify that our proposed algorithm achieved the
satisfactory performance.

3. DISCRIMINATIVE TRACKER

The tracking framework of this paper is implementing parti-
cle filter for coarse translation estimation firstly. Then, two
layers of correlation filter is applied for accurate translation
and scale estimation (Fig.1).

3.1. Multi-dimensional Correlation Filter

Correlation filters model the appearance of a target using
a filter h trained on a number of grayscale image patches
f1, f2, ..., ft with M×N pixels centered around the tar-
get. The tracker considers all cyclic shift xm,n, (m,n) ∈
0, ...,M − 1 × 0, ..., N − 1 as the training examples for the
classifier. These are labelled with the desired Gaussian func-
tions y1, y2, ..., yt, so that y(m,n) is the label for x(m,n).
Multi-dimensional feature map is considered for a signal rep-
resentation. Then, the filter can be expressed in the spatial
domain as solving the ridge regression problem:

E(h) =
1

2

t∑
i=1

‖yi −
k∑
l=1

hl ? f li‖22 +
λ

2

k∑
l=1

‖hl‖22 (1)

where f l and hl refers to the lth channel of the vectorized im-
age and filter respectively. The star ? denotes circular opera-
tor and λ is the regularization parameter. Solving this multi-
channel form in the spatial domain is even more intractable.
To reduce the problem complexity, we transform the spatial
convolution to the element-wise production in frequency do-
main and solve this equation as

H =

∑k
l=1 F

l�Y l∗

λ+
∑k
l=1 F

l∗ � F l
(2)

where Capital letters denote the discrete Fourier transforms of
the corresponding functions. The dot� denotes element-wise
production and ∗ is complex conjugate. The tracking task is
carried out on an image patch z in the new frame with the
search window size M ×N by computing the response

γ = F−1(F �H∗) (3)

3.2. Structural Correlation Filter

Figure 2 presents the structural coding template. Although
the candidate is partially occluded by a book, it is still the best
candidate sample which should be considered as the tracking
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Fig. 2: Structural updating model of correlational tracker.

results since the upper part of target is obviously observable.
The structural pattern is divided into p blocks. Each block is a
basic coding unit and adaptively implements online updating.
The final filter is made up of all the weighted block-filters.

The Peak-to-Sidelobe Ratio(PSR) measures the strength
of a correlation peak. The PSR is defined as ymax−µ

σ , where
ymax is the peak values and µ and σ are the means and s-
tandard deviations of the sidelobe. This paper uses PSR as
a metric to qualify the similarity between the target and the
candidate.

We define a weight vector W = {w1, ..., wp} to help the
appearance block maintain the underlying structure informa-
tion of target sample. The input sample is normalized into a
patch with predefined width and height firstly. Then, we par-
tition the normalized sample into p local blocks. A weight is
attached to each block. The weight of block at time t is calcu-
lated based on the block’s correlation response at time t − 1.
Then, weight wb is defined as

w(b) =

{
1 if PSRb ≥ Tt
1
p otherwise

(4)

where b is the index of structural block, b ∈ (0, 1, ..., p). To
maintain the model stability, we adopt a pre-defined threshold
Tt. Refer to Eq. (4), weight wb will be set to 1 and filter will
be fully updated if PSRb > Tt. Otherwise, the update extent
of block will be suppressed as 1

p to reduce the corruption of
interference.

The numerator and denominator of H in Eq. (2) is abbre-
viated as A and B, respectively. We update the Ab and Bb of
block b at time t separately as

{
At,b = (1− η)At−1,b + wbη

∑k
l=1 Y

l∗
t−1,b � F lt−1,b

Bt,b = (1− η)Bt−1,b + wbη
∑k
l=1 F

l∗
t−1,b � F lt−1,b

(5)
where η is a learning rate parameter.

Then, the final correlation response γ of translational filter
at a rectangular region z are computed as Eq. (7). The new
target state is found by maximizing the score γ

γt = F−1{
∑k
l=1A

∗
t−1 � Zlt

Bt−1 + λ
} (6)

Fig. 3: Structural scale pyramid sampling framework.

3.3. Scale Pyramid

The proposed algorithm specially uses a correlation filter for
scale estimation with the computational efficiency in fouri-
er domain. Different from the translational estimation, we
only extract the target patch not including of padding area
for computational efficiency. We construct a scale pyra-
mid around the estimated location from translational track-
er for scale estimation (Fig. 3). Let V × U denote the
target size in a frame and N is the number of scale level
n ∈ {b−N−1

2 , b−N−2
2 c, ..., b−

N−1
2 c}. The tracker extracts

an image patch In with size of anV × anU centered around
the estimated location of translational tracker. a is a scale
factor. We uniformly resize all patches in pyramid with size
V × U and use HOG features to construct the feature pyra-
mid. The training sample is then set to a rectangular cuboid
of the feature pyramid. The cuboid is of size V × U × S
and is centred at the target‘s estimated location and scale. We
update scale filter holistically to capture the scale variation
of whole target. The scale tracking filter is learned using
formula (7)

{
At = (1− η)At−1 + η

∑k
l=1 Y

l∗
t−1 � F lt−1

Bt = (1− η)Bt−1 + η
∑k
l=1 F

l∗
t−1 � F lt−1

(7)

4. EXPERIMENTS

This section presents experiments to demonstrate the perfor-
mance of our proposed algorithm. We evaluate our method on
a benchmark dataset [15] and select six representative videos
with comparisons to state-of-the-art methods. All tracking
methods are evaluated using distance precision and overlap
precision as shown in Table 1 and Table 2, respectively. The
first and second highest values are highlighted by bold and un-
derline. Distance precision is computed as the relative num-
ber of frames in the sequence where the centre location er-
ror is within the given threshold (20 pixels) of the ground
truth. Overlap precision is defined as the percentage of frames
where the bounding box overlap surpasses a threshold (0.5).
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Fig. 4: The average distance precision comparisons.

Fig. 5: The tracking samples of the selected datasets. They
are Basketball, Car4,FaceOccl1,Shaking,Sylvester and
Trellis from left to right.

We used 50 particles for the coarse local sampling. The
regularization parameter is set as λ = 0.005. The size of
padding window for translation estimation is set to be 1.2
times of the target size. The learning rate η in Eq. (5) is set to
be 0.02. We use N=20 as number of scales for scale pyramid
with a scale factor of a = 1.02. The threshold of Tt and Ts
are set as 0.25 and 0.3. All experiments are conducted using
MATLAB implementation on a Intel I7 3.4GHz machine with
16GB RAM. We use F-HOG for image representation and the
first dimension of feature is image intensity (graylevel) value.
Our algorithm performs well at around 12fps. Additionally,
we also test the L2 tracker [21], CT tracker [1], STC tracker
[17], KCF tracker [16] for comparative purpose.

Tables I and II show that our algorithm performs favor-
ably against the state-of-the-art methods in distance precision
(DP) and overlap precision (OP). Our algorithm achieved the
best performance inCar4, Shaking, Sylvester and Trellis,
and top performance in Basketball and FaceOccl1 from the
perspectives of DP and OP evaluations.

Figure 4 presents an average DP for comprehensive eval-
uation of the selected six datasets. The x axis denotes the
threshold in DP and y axis is the performance score normal-
ized from 0 to 1. Higher score in y axis denotes a better per-

Table 1: Comparison results of distance precision.

Video Clip L2 CT STC KCF Ours

Basketball 60.7 26.8 56 92.3 87.6
Car4 100 34.6 96.7 95 100
FaceOccl1 96.7 48 25 72.8 98
Shaking 1.2 15.6 94.8 2.5 97.9
Sylvester 37.4 93.7 94.1 94.5 96.4
Trellis 44.1 31.3 73.8 98.2 100

Table 2: Comparison results of overlap precision.

Video Clip L2 CT STC KCF Ours

Basketball 0.55 0.25 0.23 0.90 0.91
Car4 1 0.24 0.21 0.25 1
FaceOccl1 0.99 0.95 0.25 0.99 0.98
Shaking 0.01 0.16 0.82 0.02 0.95
Sylvester 0.33 0.74 0.56 0.81 0.84
Trellis 41 0.09 0.51 0.82 0.96

formance. We set the threshold range from 0 to 50. As shown
in Fig.4, our algorithm achieved the best score performance
among the other methods. It demonstrates that our algorithm
is robust to handle illumination change, occlusion, and pose
variation, etc.. KCF obtained the second high performance.
KCF performed good in the most datasets except of Shaking
and it lost the target in early stage of Shaking due to seri-
ous illumination change coupled with posture variation. STC
have the medium performance in this comparison. STC per-
formed unstable in Basketball, FaceOccl1 and Trellis at
the component of scale estimation, which causes tracking fail-
ure. Figure 4 shows that L2 and CT cannot obtain the satis-
factory performance. The representative tracking samples are
presented in Fig. 5.

5. CONCLUSIONS

This paper have presented a novel tracker to decouple the
tracking process with translation and scale estimation steps.
A coarse to fine method has been proposed to integrate par-
ticle filter with structural correlation filter for effective target
locating in spatial domain. Structural updating in spatial do-
main can make a reasonable online learning, which may ef-
fectively prevent drift and handle occlusion for translational
tracker. A sample pyramid has been introduced for a robust
scale estimation. Experiments on publicly available bench-
mark video sequences show the superiority of our proposed
method over the representatives of state-of-the-art trackers.

—————————————————————–
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