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ABSTRACT

Modern aerial imaging platforms provide wide-area motion

imagery (WAMI) at high spatial and moderate temporal resolu-

tions making feasible a range of new applications. We consider

the dual tasks of registering WAMI frames to geo-referenced vector

road-maps and tracking vehicles through the progression of WAMI

frames. We present a novel algorithm that performs these tasks

jointly and offers improvements in both by exploiting the synergy

between the tasks. Tracking for the large number of vehicles seen

in urban-area WAMI is improved by auxiliary information that reg-

istration to the vector road-map provides by localizing roads within

the scene. Similarly, registration of the WAMI frames to the vector

map is improved by formulating the registration as a chamfer min-

imization between the vehicular trajectories and the road network,

an approach that resolves challenges for registration posed by the

fundamentally different data modalities between the aerial images

and the vector road maps. Results obtained over our test datasets

show the effectiveness of the proposed joint methodology. For both

road network alignment and vehicle tracking, the proposed method

offers a very significant improvement over available alternatives: the

proposed approach yields better numerical metrics for quantification

of registration accuracy and fewer false identification switches for

tracked vehicles.

Index Terms— Wide area motion imagery, vehicle tracking,

vector road map, geo-registration, large scale visual analytics

1. INTRODUCTION

Wide area motion imagery (WAMI) that offers a high resolution pic-

ture sequences covering a “city-scale” area within each frame at tem-

poral rates of 1-2 frames per second has recently become available

with the launch of several new aerial imaging platforms [1–3]. Prior

work on WAMI has addressed individually the problems of registra-

tion of WAMI frames to a vector road-map and of vehicular track-

ing. Position and camera orientation estimates from the Global Posi-

tioning System (GPS) and Inertial Navigation System (INS) devices

on WAMI platforms provide approximate registration of the WAMI

frames to geo-referenced coordinates. In most applications, how-

ever, finer image-based registration is necessary for the road-map in-

formation to be useful. Conventional image feature matching based

techniques, such as SIFT (Scale-Invariant Feature Transform) [4],

and SURF (Speeded Up Robust Features) [5], cannot be directly

used between the fundamentally different types of data: the WAMI

data consists of image pixel values whereas the vector road map is

described as lines/curves connecting a series of points. Considerable

research has been done for aligning vector road maps to static aerial

imagery, a process that is referred to as conflation. The approach

in [6–8] is typical of conflation: the vector road representations are

aligned with an aerial image by identifying locations of correspond-

ing road intersection points in both representations and estimating

a parametric registration transformation for the alignment. Detec-

tion of road intersections in the aerial images, which is critical for

this process, is plagued by problems in natural scenes due to view

point changes over a large range, shadows and occlusions caused by

buildings and trees adjoining the roads and other variations in imag-

ing conditions. To aid in the process, a recent approach [6] proposes

the use of hyper-spectral aerial imagery, where spectral properties

and contextual analysis can aid in detection of road intersections. A

Bayes approach for road segmentation is proposed in [7] which is

then followed by localized template matching to detect the road in-

tersections. While the results from the approach are promising, it

requires a large number of manually labeled training examples for

each data set. In [8], corner detection is used to detect road intersec-

tions, which is often unreliable, specially in high resolution aerial

images, for which simple corner detection fails because the roads

are quite wide.

The utility of WAMI imagery in vehicular tracking has also been

recognized and a number of efforts exist in this area. The majority

of these, adopt a tracking by detection framework wherein given ve-

hicle detections in each frame, the goal is to associate detections

corresponding to the same vehicle over the entire set of aerial im-

age frames. In [9], detections in successive frames are associated

based on context similarity measure. Another context similarity ap-

proach is proposed in [10] to handle more complex cases. In [11],

joint probabilistic graph matching is used to associate detections for

successive frames. Due to limited vehicle appearance, these meth-

ods are prone to ID switches, as some characteristics (speed, direc-

tion, etc) for tracked vehicles are inferred from the first few frames

which can result in ambiguous or incorrect associations in subse-

quent frames. Based on observations of these problems, other ef-

forts approach the assignment problem globally over the entire set of

video frames [12–15], and provide efficient approaches to obtain a

solution in reasonable time. These approaches do not scale to WAMI

because of the extremely large number of vehicles to be tracked in

urban WAMI scenes. Additionally, the methods are often designed

for full motion video at 30 frames per second and do not directly

translate to the low temporal resolutions typical of WAMI.

Prior work has also recognized the potential benefit that can be

obtained for vehicular tracking in aerial imagery upon registration to

a geo-referenced road map. For example, in [11] a co-registered road

network, assumed available a priori, is used to regularize the match-

ing of the vehicle detections to the previous existing vehicular tracks.

In [16], in a variant of the previously described approaches for regis-

tration, SIFT is used to detect correspondences between the ground

features from a small footprint aerial video frame and an auxiliary

geo-referenced image to geo-register the video frames. This geo-

registration helps to estimate the camera pose and depth map for each

frame, and this depth map is used to segment the scene into build-

ing, foliage, and roads using a multi-cue segmentation framework.
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The segmentation is used to help improve tracking by reducing false

vehicle detections. The approach is, however, computationally de-

manding.

In contrast with the prior methods that address registration and

tracking for WAMI independently or individually, in this paper, we

propose a joint approach for both registration and tracking. Our ap-

proach simultaneously estimates, via an alternating minimization,

vehicular trajectories over a multi-frame (typically 10-15 frames)

temporal window and the geometric transformation for best align-

ing these trajectories with the road network. The approach is devel-

oped based on a maximum a posteriori probability (MAP) formu-

lation for the problem that penalizes trajectory deviations from the

road network using: (1) a novel chamfer distance [17] metric for the

registration accuracy that we introduced in [18] and appropriately

modify for our new problem setting and (2) a successive approach to

identifying and extending reliable trajectories for individual vehicles

based on detections in individual frames and the alignment of the

oriented trajectories with the road network and directionality. Re-

sults obtained over a test WAMI dataset highlight the effectiveness

of the proposed method: compared with the alternatives we obtain

better estimates of both the vehicle trajectories and the registration

between the WAMI frames and the vector road map.

This paper is organized as follows. Section 2 explains our novel

joint formulation for vehicle trajectory estimation and road network

alignment, and the proposed solution. Results and a comparison

against alternative methods are presented in Section 3. We conclude

the paper in Section 4.

2. JOINT VEHICLE TRACKING AND ROAD NETWORK

ALIGNMENT

2.1. Problem Formulation

A1
AN

A2

}
}T = {

I1 IN
I2

Z = {

Fig. 1: Joint vehicle tracking and road network alignment. Detec-

tions and corresponding trajectories are shown in the same color on

video frames and on the map. Given vehicle detections for each

frame, our goal is to link these detections into trajectories and esti-

mate the geometric transformations Ai, i = 1, . . . , N

Fig. 1 illustrates our problem setting and is helpful for under-

standing our formal problem formulation that follows. We assume

that we have available a vector map Rg defined as an orthographic

projection [19] using corresponding 2D orthogonal geo-referenced

coordinates (χ, ζ). The map identifies the network of roads in the

geographic area, the kth road rk being represented as a sequence

of spatial locations (rχk
i ,

rζki ) along the road and its direction

represented as a sequence of orientation angles rθki ∈ [−π, π],
where i = 1, 2, . . . Nr

k for the kth road. For a set of N time in-

stants t1 < t2 < · · · < tN , a corresponding series of N WAMI

frames I =
(

I1(x
1, y1), I2(x

2, y2), . . . , IN (xN , yN)
)

are cap-

tured by the moving aerial platform where (xi, yi) are the pixel

locations along the native orthogonal coordinates for the image

sensor when capturing the ith image. Under a planar assumption

for the imaged region, a 3 × 3 homography matrix Ai relates the

image coordinates (xi, yi) for the ith frame to the orthographic

geo-referenced 2D coordinates (χ, ζ) via the homogeneous trans-

formation relation [χ, ζ, ω]T = Ai[x, y, 1]
T , where ω is a scaling

factor [20]. For the (arbitrary number of) moving vehicles captured

in the WAMI frames we define trajectories, where for the lth vehi-

cle, we define the trajectory as the sequence of N spatial locations

Tl =
(

(vχl
1,

v ζl1), (
vχl

2,
v ζl2), . . . (

vχl
N ,v ζlN )

)

at the time instants

t1, t2, . . . , tN , respectively (in the geo-referenced coordinate sys-

tem of Rg). We are interested in estimating the transformations

A = {Ai}
N

i=1
that register the captured WAMI frames to the geo-

referenced map Rg and in tracking the moving vehicles captured in

the WAMI frames by estimating their trajectories T = {Tl}. We

consider a maximum a posteriori probability (MAP) formulation for

the estimation, where the optimal estimates of the registration and

the trajectories are obtained as1

{T̂ , Â} = argmax
T ,A

P (T ,A|I). (1)

Our joint formulation benefits both trajectory and alignment estima-

tion sub-problems. As we capture vehicles locations on each frame

coordinate system, mapping these vehicle locations into a common

reference coordinate system (Rg) and estimating trajectories in that

coordinate system, allows us to leverage the rich geo-spatial infor-

mation provided by Rg , which helps to estimate accurate trajec-

tories. However, estimating an accurate registration between the

WAMI frames and Rg is challenging task due to the difference be-

tween their data representations. The estimated trajectories help

solve this difficult registration problem because both estimated tra-

jectories and Rg have the same representation (binary). Thus, both

trajectory, and alignment estimation sub-problems benefit from each

other in a joint solution approach. Instead of solving the estimation

problem in (1) directly, we split the duration of the WAMI frames

into a series of temporal windows and solve the problem for each

temporal window and propagate estimates between the windows.

Thus we assume that the N frames previously defined represent a

single temporal window used for processing. For our temporal win-

dow, the transformations A = {Ai}
N

i=1
can equivalently be rep-

resented by the transformation A1 and the homography matrices
{

H
i+1

i

}N−1

i=1
that relate successive frames2, where H

j
i transforms

the image coordinates (xj , yj) for the jth frame to the image coordi-

nates (xi, yi) for the ith frame. Furthermore, using the co-registered

frames in the temporal window, a background model is readily ob-

tained for the entire window (for example by using the median fil-

ter [9]) that in turn allows ready detection of the vehicle locations.

Specifically, in the ith WAMI frame we denote the detected vehicle

locations as a sequence z
i
k = (vxi

k,
v yi

k), k = 1, 2, . . . of points in

the frame’s native pixel coordinates. To proceed further, we adopt

a tracking by detection framework, where tracking operates on the

vehicle locations detected in each WAMI frame (using a vehicle de-

tector) and approximates the estimation in (1) by

{T̂ , Â1} = arg max
T ,A1

P (T ,A1|Z), (2)

1Throughout the description, we assume that the vector map Rg is given.
To simplify notation we do not indicate this conditioning.

2Short windows ensure that accumulated error is negligible.
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Fig. 2: Block diagram for one iteration of the proposed joint vehicle tracking and road network alignment algorithm.

where Z =
{

z
i
k

}

i,k
is the complete set of vehicular detections. This

approximation becomes exact under the assumption that the inter-

frame registrations are a function of the image data and the complete

set of vehicular detections Z constitute sufficient statistics [21]. By

applying Bayes’ rule, (2) becomes

{T̂ , Â1} = arg max
T ,A1

P (Z|T ,A1)P (T ,A1), (3)

where P (T ,A1) is the prior joint distribution, and P (Z|T ,A1) is

the likelihood distribution. Page-length restrictions limit us to con-

veying only the intuition of our method here, readers are referred to

an upcoming journal submission [22] for details (also for publicly

availability of datasets).

We assume that vehicle detections are conditionally independent

given T and A1 and model the likelihood as a Bernoulli distribu-

tion as in [15]. The trajectories T (in the geo-referenced coordinate

system of Rg) do not depend on the transformation A1, and there-

fore the prior distribution factors as P (T ,A1) = P (A1)P (T ). We

model P (T ) = Pmotion(T )Proad(T ), where Pmotion(T ) mea-

sures the motion consistency of trajectories in T in terms of veloc-

ity variation, and the Proad(T ) measures how well trajectories are

matched with roads in Rg by penalizing deviations of each trajec-

tory from the road network in terms of both location and orientation

mismatch, quantified by an oriented chamfer distance [17]. Thus,

to maximize (3), we search for trajectories T̂ composed from vehi-

cle detections that have small velocity variation over our temporal

analysis window and agree with the roads in Rg in terms of location

and orientation, i.e., have a low oriented chamfer distance [23] with

roads in Rg .

2.2. Iterative optimization algorithm

One iteration of our proposed iterative algorithm is shown in Fig.

2. Our algorithm’s goal is to estimate the transformation Â1 that

maps vehicular detections form the WAMI frames’ native coordinate

system to the road network Rg coordinate system, and estimate the

trajectories T̂ by linking these mapped detections together over the

N WAMI frames, where Â1 and T̂ maximize (3). We propose an

iterative solution by alternating the optimization with respect to T̂
and Â1, viz.,

Â
n+1

1 = argmax
As

P (T̂ n
,As|Z), (4)

T̂ n+1 = argmax
Ts

P (Ts, Â
n+1

1 |Z), (5)

where T̂ n, and Â
n
1 are the estimated trajectories and registration

transformation in iteration n, respectively.

As shown in Fig. 2, our algorithm uses all detections within the

N frame temporal window. These detections are initially mapped to

a common reference frame I1 as described previously, then mapped

to the coordinate system of Rg using the current estimate Â1. With

the help of the road network information available in Rg , these geo-

referenced mapped detections are associated on a frame-to-frame

basis to estimate the initial trajectories. From these initial trajec-

tories, we select the reliable ones (defined as having small velocity

variations and good alignment with the road network) and then we

progressively enlarge these reliable trajectories by iteratively linking

them together and with the unassigned detections using the available

road network information. With these enlarged reliable trajectories

in hand, we estimate a more accurate transformation Â1 that best

aligns these trajectories with the road network in Rg . The new es-

timate Â1 in turn helps us to recover more reliable trajectories by

repeating the mentioned iterative process until no more detections

are assigned to the existing trajectories.

3. EXPERIMENTAL RESULTS

(a) I5 (b) I10

Fig. 3: Road network alignment results from different methods for

a sample frame. The results for our method are shown in green, for

MBA in blue, SBA in purple (only in (a)), and VBA in red (only in

(b)).

We evaluated our algorithm on a WAMI data set recorded us-

ing the CorvusEye 1500 Wide-Area Airborne System [24] for the

Rochester, NY region. For the vector road map, we use Open-

StreetMap (OSM) [25]. OSM provides each road in a road network

in a vector format along with properties of each road such as its type

(highway, residential, etc) and number of lanes.

To test the effectiveness of our joint methodology, we create

a test sequence corresponding to our analysis temporal window of

N = 10 frames (which maintains relevant temporal context with
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moderate computational burden) by cropping a region (1000×1000
pixels) that contains a forked road network with different direc-

tions and also a lot of occluders (bridges, trees, etc.), captured from

oblique angle as shown in Fig. 3. We use this sequence to evaluate

both the registration and tracking accuracies.

Our results are in two parts. First, we compare our method in

terms of registration accuracy with three alternative methods. Next,

we compare our tracking method with the method in [9]. To evaluate

our registration accuracy, we compare with “Meta-data Based Align-

ment (MBA)” and “SIFT matching with auxiliary geo-referenced

image (SBA)”, and “Vehicular detections based alignment (VBA)

in [18]”. The MBA method obtains the alignment by using the meta-

data from the NITF 2.1 format [26] files used for the WAMI frames.

The SBA method tries to match SIFT features between the aerial

image and an auxiliary ortho-rectified geo-referenced image taken

from Google Maps. VBA registers the road network with the WAMI

frame by minimizing the chamfer distance between identified vehic-

ular detection locations and the network of road lines identified in

the vector road map [18].

For a single frame, the aligned road networks obtained with pro-

posed method and with the alternative SBA, MBA, and VBA meth-

ods are shown in Fig. 3. The proposed method offers a significant en-

hancement over MBA which depends only on the meta-data to get an

aligned road network and over SBA which uses SIFT and auxiliary

geo-referenced Google map image, and shows improvement over the

VBA method. The MBA method has significant errors because of the

inaccuracy of the meta-data parameters due to the limited accuracy

of on-board navigation devices. The SBA method does not improve

significantly because of spurious correspondences found by the SIFT

matching between the aerial image and the Google map image which

have significant differences due to severe view point change, differ-

ent illumination, and different capturing times. Our method provides

a more accurate result compared to the VBA method by incorpo-

rating both trajectory locations and directions in the road network

alignment, whereas the VBA method estimates the alignment from

detection locations alone [18].

To provide quantitative comparison between the different regis-

tration methods, we manually label the ground truth (GT) road net-

work for our test sequence and calculate the chamfer distance be-

tween the ground truth road network and the road network generated

from our method, the VBA, the SBA method, and the MBA method.

The results summarized in Table 1 reinforce the conclusions seen vi-

sually. The proposed method has a much lower value for the chamfer

distance highlighting the fact that the proposed method offers a sig-

nificant improvement over both the MBA and SBA methods, and

shows a moderate improvement over our recent VBA method.

MBA SBA VBA Proposed

GT chamfer
33.4 5.9 0.9 0.56

distance

Improvement 98.3% 90.5% 37.7% -

Table 1: Chamfer distance between the ground truth road network

and the road network generated using the MBA method, the SBA

method, the VBA method, and our proposed method.

To evaluate our tracking methodology, we manually label each

vehicle within our test sequence and quantify tracking performance

by the number of ID-switches for each vehicle compared to its

ground truth label, and by Multiple Object Tracking Accuracy

(MOTA) defined in [27] (with cs = 1). We compare our tracking

methodology with the “Frame-to Frame based Association method

(F2FA)” [9] that use the Hungarian algorithm to associate vehicle

detections with the estimated trajectories from frame to frame (FTF)

using a cost metric that penalizes the velocity, position, and spa-

tial context mismatch constrained by an estimated road direction.

Moreover, we drop the road direction estimation step, and modify

the method to exploit our accurately aligned road network resulting

in a modified method “Frame-to Frame based Road constrained

Association method (F2FRA)”.

F2FA F2FRA Proposed

method [9] method method

ID-switches 3.2 2.1 0.6

MOTA 0.55 0.7 0.91

Table 2: Comparison of the proposed method with the F2FA, and

F2FRA methods in terms of average number of ID-switches and

MOTA. The result show that our tracking methodology provide sig-

nificant enhancement for the average ID-switches and the MOTA

compared to the other methods.

In Table 2, we show a comparison in terms of ID-switches

and MOTA for our proposed method with the F2FA method and the

F2FRA method. The average number of ID-switches of our proposed

method is much less than the F2FA method. The F2FA method is

prone to ID-switches, because it associates vehicle detections from

FTF, a process that causes errors to propagate to following frames.

Introducing our aligned road network for defining the cost function

for associating detections to trajectories, reduces the ID-switches

for the F2FA method as seen in the tabulated results for F2FRA.

The proposed method improves further upon this, providing the

best result among the methods evaluated. The results highlight the

contribution of our method, which solves the multi-vehicle tracking

problem globally over the entire temporal window. The approach

employed in our method of iteratively optimizing by relying on

reliable trajectories introduces a mechanism that can recover from

the assignment errors resulting from incorrect FTF associations.

Our implementation is in C++ using OpenCV [28] libraries and

the current unoptimized implementation requires about 0.8 seconds

per frame for tracking, after FTF registration and background esti-

mation are complete.

4. CONCLUSIONS

The joint formulation we propose for registering WAMI frames to

a vector road map and for tracking vehicles within WAMI frames

offers a significant improvement over prior alternative approaches

that tackle these problems individually. For our ground-truth labeled

WAMI dataset, compared with the approximate registration parame-

ters obtained from WAMI metadata, our method reduced the chamfer

error metric for registration inaccuracy by 98% and compared with

our own recent related but non-joint approach [18] the chamfer error

metric is reduced by 37%. Tracking performance is also improved

by our proposed approach: tracks obtained are more consistent with

the road network and with themselves, and the average number of

identity switches seen are reduced by 81% compared with a recent

state of the art tracking method. Similar results are obtained for a

much large corpus of imagery from different sources [22]. These re-

sults demonstrate that our framework effectively utilizes the synergy

between the problems of geo-registration and tracking for WAMI.
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