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ABSTRACT

In this paper we study common, camera-specific kinds of dis-
tortions and propose a no-reference image quality assessment
algorithm for photographic images produced by consumer de-
vices. Those real consumer-type images, being different from
simulated-distortion images, are with realistic artifacts and
quality ranges. We find that the state-of-the-art no-reference
image quality assessment approaches do not perform well
on those photographic images, and propose an approach
that achieves high prediction performance on a dataset of
consumer-centric images. The proposed method, with no
need for the original image, is able to reveal camera-specific
problems and differentiate consumer cameras.

Index Terms— Consumer devices, camera-specific dis-
tortions, no-reference image quality assessment(NR IQA).

1. INTRODUCTION

With the development of the electronic technology, digital
cameras entered people’s life since last century. In 2013, the
number of households in the United States owning a digital
camera amounted to around 122.68 million, which accounted
for 85 percent. Besides, with nearly everyone carrying smart-
phone in their pocket everywhere they go, it is convenient to
take snaps anytime and anywhere. The arising question is
how to objectively compare the quality of photographs pro-
duced by different digital devices, which is an important is-
sue for consumers to determine which device to buy. And for
manufacturers, it helps to better design the optical system and
Image Signal Processor (ISP).

Different cameras with specific components and features
will introduce different distortion combinations and thus af-
fect consumers’ decisions. These distortions are hard to sim-
ulate as they depend on the optics, the signal processor and
the photographic content. Whether it is a mobile phone cam-
era, a compact digital camera or a Digital Single Lens Reflex
( DSLR ), there are some basic component parts: the lense,
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Fig. 1: Examples with and without the anti-alias filter: (a) is without
the filter and with moire, (b) is with the filter and without moire. (c)
shows more fine details without the filter, and (d) shows the softness
resulted by the filter.

shutter, aperture, flash, sensor, and ISP. And the features usu-
ally used for comparisons are: resolution and sensor’s size,
color reproduction, noise and distortion, optical and digital
zoom, shutter delay, manual and auto focusing, image sta-
bilisation, ISO, and white balance. A change in one com-
ponent or feature will make difference. For example, some
cameras have the anti-alias filter in the optical system which
compromises on image quality, trading fine details for a lower
risk of moire. Fig. 1 shows excellent examples of the resul-
tant images with and without the aliasing filter. What’s more,
the metering determines the exposure accordingly and wrong
evaluation will make some images come out too bright or too
dark. Insufficient white balancing will cause global color er-
rors such as a green overcast in the final image. Some mobile
phone cameras, without IR filters, will identify the infrared
as magenta. Considerable colored digital noise will appear in
dim light shot, etc. These images with the listed kinds of dis-
tortions can reveal camera-specific problems and differentiate
consumer cameras. However, these more practical and com-
plex distortions cannot be unified into the domain of common

1085978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



1

2

(a) Photograph of good quality
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(b) Local region

Fig. 2: Example of sharpness: ( a ) is one photograph of good quality.
( b ) shows two chosen regions in ( a ), region ( 1 ) has obvious edges,
region ( 2 ) has no edges or textures, but both of them are good.

distortions like white noise, gaussian blur, JPEG, etc. We call
them camera-specific distortions in this paper.

The largest number of objective image quality assessment
metrics are full-reference (FR) methods [1], [2], [3], [4],
which assume that the original image signal is completely
known. Those metrics are usually of high performance.
However, the dependence of original images severely re-
duces its applicability, and FR IQA methods measure the
fidelity to the reference which will take image enhance-
ment as “distortions”. To solve these problems, many
blind quality measures have been developed during the last
decade [5], [6], [7], [8]. Those NR IQA methods are ap-
plicable in many more practical scenarios and show high
performance on image databases [9]. However, when mea-
suring the above-mentioned camera-specific distortions, these
NR IQA methods do not perform well. Those photographic
images are of complex distortions and have a narrow range
of quality. The correlations between predicted and subjective
scores might be high when predicting images of single dis-
tortion and a wide range of quality, but the correlations are
much lower when predicting photographic photos. [10] intro-
duces an approach with training to solve the problem. Here
we propose an effective method without training to solve the
problem at hand.

Estimation of sharpness is an important part in our model.
Photographs produced by low-resolution cameras will in-
evitably lack details. Improper white-balance or unsound
filters will make images look like being covered by haze.
Inaccurate metering will make images too bright or too dark.
All of those will decrease sharpness. Measure of sharpness
is important in photographic images. However, according
to Segur [11], it is common for photography to have some
areas with few textures and edges. These areas are not always
distorted ones but are the actual appearance of scenes, e.g.,
region ( 2 ) in Fig. 2. To be more precise, we take the color
information into consideration to give the pure-color area an
impartial treatment. We classify pixels into several clusters
by their color information, the number of clusters is designed
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(a) Division map

( 1 )

( 2 )

(b) Local region

Fig. 3: Output division map: ( a ) is the result of classification which
shows the four main color clusters in the whole image, different grey
levels represent different clusters. ( b ) shows two chosen regions,
pixels in region ( 1 ) cross three clusters, all pixels in region ( 2 ) are
in the same cluster.

to automatically change depending on the image content.
We evaluate sharpness of local blocks and finally predict the
overall accurate sharpness of images. By the observation of
abundant noise appearing when there is dim light in the scene,
we take the evaluation of noise among dark photographs as
another important part of our model. We conduct experiments
on CID2013 [12] database with real distortions to validate the
proposed model.

The remainder of this article is organized as follows. Sec-
tion 2 presents the proposed photographic image quality as-
sessment method. In Section 3, the effectiveness of our algo-
rithm is proved by comparison of its experimental results with
those obtained through existing relevant models. Finally, sev-
eral concluding remarks are presented in Section 4.

2. FRAMEWORK FOR NO-REFERENCE
PHOTOGRAPH QUALITY ASSESSMENT

Table 1: Self-adaptive classification considering color information
via kmeans.

Image classification ( input image D, threshold T , output divi-
sion map M , number of clusters to be classified N , cluster cen-
troid locations C. )
1. Let N = 2 be the initial number of clusters to be classified.
2. Let D be the input of kmeans function. Kmeans partition the
H − by − 3 data matrix into N clusters where H is the number
of pixels and 3 represents the RGB color information. Each clu-
ster contains pixels with similar color information. Calculate the
proportion P of the smallest cluster.
3. Add one to the number of clusters to be classified N .
4. Iterate between (2) and (3) until P < T .
5. Return M , N , C.

2.1. Sharpness measure

Taking the measure of sharpness first, we choose to use color
information partly because the grey-scale map is somewhat
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Fig. 4: Color map: ( a ) is the classification of pixels of the sample
image in RGB color space. ( b ) shows two rectangles whose color
maps are different but the grey-scale maps are the same.

inaccurate to evaluate sharpness. In Fig. 4 ( b ), two rects
have different colors but their grey-scale maps are the same.
What’s more, color information is important in photography.
In our model, we classify pixels into several clusters against
color information, the classification will be a guide to further
sharpness evaluations. Table 1 gives the detailed operations
to make the process be self-adaptive.

Fig. 3 is the result of color classification for Fig. 2. The
input image is classified into four parts according to the main
color information as the division map shows. The sky and
cloud are classified into one cluster because of threshold, if
we set a smaller value of threshold, the sky and cloud will be
separated. Fig. 4 ( a ) shows the distribution and classification
of pixels in RGB color space.

In the original RGB image we take the spatial-based mea-
sure of sharpness after each pixel has been classified into its
own cluster. In a m× n sized local patch, we count the num-
ber of clusters. If there existing only one cluster like region (
2 ) in Fig. 3, we will switch to next patch. In the multi-cluster
patch X , we calculate in each smaller block of X via

S(X) = max
γn∈X

∑
i,j∈γn

||pi − pj||, n = 1, 2, 3...M. (1)

where γn is one of smaller 2 × 2 sized blocks in X , p is the
pixel with RGB information in γ. An example of the spatial
measure of sharpness is shown in Fig. 5 ( a )

The max operator used in Eq. (1) and the threshold T in
Table 1 attempt to eliminate the negative effect of pixels near
cluster borders. Euclidean distance of pixels near different
color cluster centroid locations help to predict the sharpness,
but the pixels near the border between two clusters will make
the prediction inaccurate. When T is too small, the number of
clusters will increase which will intuitively bring about more
borders and degrade the performance. When T is too large,
many pixels carrying useful information will be cut down. So
we should set an appropriate value of threshold. Besides, the
max operator ignores the pixels of small distance which re-
duces the influence of pixels near borders. And when the size
of X is appropriate, the max operator does not cut down use-

(a) (b)

(c) (d)

Fig. 5: ( a ) is the block diagram of the spatial measure of sharpness,
( b ) is the sharpness map in which brighter blocks denote greater
perceived sharpness, ( c ) is the sharpness map generated by S3, and
( d ) shows the top one percent areas marked by white for calculation
in S3.

ful pixels.
We estimate the overall sharpness of image via

S =
1

N

N∑
i=1

S(Xi) (2)

where N is the number of multi-cluster patches in image.
Fig. 5 ( b ) is the resulting sharpness map, the single-cluster
patches appearing black are assigned zero, those patches of
abundant edges or textures like trees, grass, and pedestrian are
marked by light gray as we expect. Fig. 5 ( c ) and ( d ) are re-
sults generated by S3 algorithm [7], the top one percent areas
in ( d ) marked by white are calculated to represent the over-
all sharpness in S3, and FISH bb [6] also use the same way to
take the top one percent values into account which we think
is inappropriate. Unlike these images with simulated distor-
tions, the photographic image will be processed by ISP before
its final display. The ISP shall conduct in-camera sharpening
which enhances the sharpness of images by emphasizing the
transitions between light and dark areas with halos, e.g., black
areas in Fig. 5 ( a ). If only the top one percent areas are cal-
culated, we will actually measure the halos and avoid most
textures.

2.2. Compound noise estimation

Among those images of low luminance, single sharpness
measure is not enough because of the emerging noise. Noise
is an unfortunate byproduct of digital sensors. Abundant
noise appears when there is dim light in the scene. When
the luminance of image is small, we will measure the noise,
where the luminance is estimated as the mean intensity. Re-
alistic noises here are more complex than the mathematically
convenient additive Gaussian model and we refer to the com-
pound noise model in [13] to solve the problem. It is assumed
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Table 2: PLCC and SROCC correlations between predicted and
subjective MOS scores on the CID2013 database.

Algorithm PLCC SROCC
Proposed (with noise estimation) 0.818 0.793

Proposed (without noise estimation) 0.804 0.785
FISH bb [6] 0.745 0.728

S3 [7] 0.725 0.708
FISH [6] 0.691 0.674

SISBLIM [14] 0.690 0.643
NFERM [8] 0.638 0.614
FEDM [15] 0.541 0.508

ARISMC [16] 0.497 0.429
BRISQUE [5] 0.476 0.443

in [13] that the kurtosis values tend to be invariant across
scales for a natural image, and the scale invariance will be
deteriorated by the added noise. For an input image signal x,
the kurtosis of its noisy version y can be expressed via

K(y) =

(
σ2(y)− σ2(x)

σ2(y)

)2

K(x) +

(
σ2(n)

σ2(y)

)2

K(n) (3)

where K(x), K(y) and K(n) are the kurtosis values of x,
y and the noise n. σ(x) , σ(y) and σ(n) are the standard
deviation of x, y and n. We change the form into compound
noise. An additive and multiplicative compound noise model
for noises of CCD and CMOS sensors was suggested

Y = X + (s1 + s2X)N, N ∼ N (0, 1) (4)

where X and Y are the original and noisy images, and s1 and
s2 are the additive and multiplicative parameters. By experi-
mental results we empirically setK(n) = 1 in (3). Therefore,
the variance of noise σ̂2

n can be estimated by minimizing:

K̂(x), σ̂2(n) = arg min
K(x),σ2(n)

(5)

∑
i∈α

∣∣∣∣∣∣∣∣K̂(yi)−
(
σ̂2(yi)− σ2(n)

σ̂2(yi)

)2

K(x) +

(
σ2(n)

σ̂2(yi)

)2∣∣∣∣∣∣∣∣
where α denotes the set of selected frequency indexes, and
( σ

2(n)
σ̂2(yi)

)2 reflects the influence of the multiplicative term of
the noise.

We estimate the luminance of image, for those images of
low luminance we take the noise level estimation and use term
Sn = S−β×σ̂(n) as the overall prediction where β is derived
from the observation of experimental results.

3. EXPERIMENTS AND ANALYSIS

We use CID2013 [12] to validate the effectiveness of our
method. This database includes six datasets with their respec-
tive subjective mean-opinion-scores (MOS). Every dataset
includes six different scenes derived from strictly defined
clusters. Every scene was captured by 12-14 different cam-
eras. This database is able to differentiate consumer cameras,

Threshold T

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

P
L
C

C

0.79

0.795

0.8

0.805

0.81

0.815

0.82

0.825

0.83

Fig. 6: Prediction accuracy of the proposed algorithm for the images
in the CID2013 database with different values of threshold T. The
horizontal axis is the threshold. The vertical axis is PLCC correla-
tions. The error bars show the float of kmeans among 100 times.

reveal camera-specific problems and represent views that typ-
ical consumer camera users might capture with their cameras.
So the faithful prediction will provide manufacturers and
consumers with objective guide.

Person linear correlation coefficient (PLCC) and Spear-
man rank-order correlation coefficient (SROCC) are used to
evaluate performance of our approach. PLCC can be con-
sidered as a measure of prediction accuracy, while SROCC
measures the monotonicity by ignoring the relative distance
between the data. The higher SROCC and PLCC values in-
dicate better performance in terms of correlation with human
opinion.

We repeat our algorithm 100 times and report the median
result of the performance across these 100 iterations because
the results of kmeans change little each time. We compare
our algorithm against the recent no-reference IQA approaches
FISH bb [6], S3 [7], FISH [6], SSIBLIM [14], NFERM [8],
FEDM [15], ARISMC [16],BRISQUE [5]. Table 2 shows that
our method outperforms the state-of-art NR IQA. Model with
noise estimation performs better because it improves the ac-
curacy of predicting low-quality images within the database.
Experimental results in Fig. 6 prove that too large or small
thresholds will decrease the prediction accuracy, but the cal-
culated PLCC correlations are not very sensitive to T as the
figure shows. It is deserved to be mentioned that our approach
with no need for training is easy to use with.

4. CONCLUSION

In this paper we propose a no-reference image quality as-
sessment algorithm for photographic images with realistic,
camera-specific distortions and quality ranges produced by
consumer devices. The proposed algorithm solves the pure-
color problem and dim-light noise that are common in pho-
tography. It is an approach with no need for training and the
information of the original image which is easy to use with.
However, we do not solve all the introduced camera-specific
distortions. Moire is such a distortion we can find in CID2013
but it’s not included in current framework, which will be stud-
ied on in the future.
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