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Deep convolutional neural networks have shown outstanding 
performance in several speech and image recognition tasks. 
However they demand high computational complexity which 
limits their deployment in resource limited machines. The 
proposed work lowers the hardware complexity by 
constraining the learned convolutional kernels to be 
separable and also reducing the word-length of these kernels 
and other weights in the fully connected layers. To 
compensate for the effect of direct quantization, a retraining 
scheme that includes filter separation and quantization inside 
of the adaptation procedure is developed in this work. The 
filter separation reduces the number of parameters and 
arithmetic operations by 60% for a 5x5 kernel, and the 
quantization further lowers the precision of storage and 
arithmetic by more than 80 to 90% when compared to a 
floating-point algorithm. Experimental results on MNIST 
and CIFAR-10 datasets are presented.  

Index Terms— convolutional neural network, separable 
kernels, word-length optimization 
 

 
Deep convolutional neural networks (CNN) have shown 
quite good performance at various computer vision 
applications [1] [2]. A CNN network mainly consists of 
three types of layers: convolution, pooling and fully 
connected layers. Conceptually the convolution layers 
perform feature extraction while the rear end fully connected 
layers conduct classification. Usually most of the 
computations are performed in the convolution layers [1] [2] 
[3]. Further, bigger sized convolution kernels may have 
improved representational capacity at the cost of increased 
processing. It is therefore highly desired to optimize these 
convolution layers. It was proposed by [4] that a 2D matrix 

can be approximated with the product of two 1D vectors. 
The singular value decomposition (SVD) was formally 
introduced in [5] to approximate a set of filters with linear 
combinations of a small number of basis functions. 

A 3x3 Sobel edge detector example is shown in Fig. 1. 
For a K x K filter, the count of weights is reduced to K + K 
and the speedup is K2/2K. The principal of separability is 
applied in [6] where two sets of separable and non-separable 
filters are first learnt. The non-separable filters are then 
approximated as linear combination of separable filters. 
Jaderberg et al. performs low rank decomposition not only 
for filters but also in the channel dimension [7]. In [8], the 
memory and runtime cost is reduced with sparse 
connectivity in convolution and fully connected layers. 
Fixed-point optimization of DNN and CNN is proposed in 
[9] [10] [11] for reduced memory and runtime costs. 
However all these kernels are either non-separable or learnt 
in high precision (32 bit).  

The proposed work has two contributions. We first 
approximate the separable kernels from non-separable ones 
using SVD. This is followed by quantization with reduced 
word-lengths for decreasing the computational and VLSI 
implementation cost. In order to compensate for the 
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Fig. 1. 2D separable Sobel filter decomposed into two 1D filters.  
Convolving the input image having WH (width x height) dimensions 
with a K x K convolution kernel requires WHKK multiplications and 
additions. Separable kernels, however require WH(K+K) 
multiplications and additions. This results in  = 

/( ( + )) = /2. Further we only need to save K+K weights 
instead of K x K. 
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performance loss due to filter separation and weigh 
quantization, these operations are conducted inside of the 
retraining process so that the network learns the effect of 
these transforms and quantization.  

The rest of the paper is organized as follows. Section 2 
introduces separable kernels and the quantization algorithm. 
Section 3 explains the retraining algorithm. Experimental 
results are provided in Section 4. Finally, Section 5 
concludes the work. 
 

 
We first train the network with floating point weights using 
error back propagation [12] and mini-batch gradient descent. 
The network has the freedom to learn any kinds of filters and 
no constraint is imposed on it at this stage. Each convolution 
kernel is then decomposed into 3 matrices using SVD.  Eq. 
(I) and (II) shows this relationship. Matrix U and V are 
orthogonal matrices and S is a diagonal matrix containing 
singular values. The reconstructed matrix W will be rank 1 if 
we only use S(1, 1) in Eq. (II).  

The SVD kernels and weights in the fully connected layer 
are then fixed-point optimized which is explained in the 
following two subsections. The plots in Fig. 2 shows that 
separability and quantization significantly reduce the 
required memory for storing convolutional weights. The 
kernels are only relevant for convolution layers. It is 
important to note that SVD computation does not demand 
any cost at the inference time since it is only computed 
during training.  
 

Components in a digital signal processing system may 
exhibit varying level of sensitivity to quantization noise. 
Therefore we use different quantization bits for each layer in 

accordance to sensitivity analysis [10] [13]. The results 
drawn in [10] shows that the rear layers of CNN are 
comparatively more sensitive to quantization noise. Each 
convolution kernel is treated independently and has its own 
quantization step size. However each fully connected layer 
has one quantization step size. Biases are kept in high 
precision. Throughout this paper high precision refers to 32-
bit floating point. Eq. (1) to (7) in Listing 1 outlines the L2 
error minimization criterion. The goal is to quantize the 
input vector with an optimum quantization step size . This 
criterion uses a uniform quantizer and bears similarity with 
the Lloyd-Max quantization [9]. Q(x) represents the 
quantization function, M represents the number of 
quantization levels and z shows integer membership. When 
M is 7, it demands 3 bits for weight representation. The 
obtained quantized network shows degraded performance 
compared to the floating point network.  
 

 
Approximating a non-separable matrix with a rank1 matrix 

Table 1 Fixed-point optimization without re-training  
(CIFAR-10), floating point MCR = 26.21% 

Separable
Kernels 

Convolution 
Layers (M Levels) 

Rear Layers  
(M Levels) 

Test Set 
MCR 
(%) C1 C3 C5 F6 F7 

No 

3 3 3 7 31 77.63 
42.36 7 

15 
7 7 15 31 

15 15 31 63 47.02 
31 31 31 63 63 32.74 

Yes 

3 3 3 7 31 81.55 
7 7 7 15 31 60.59 

15 15 15 31 63 59.82 
31 31 31 63 63 59.46 

 
Listing 1. Quantization with L2 error minimization [9] [10] 

Fig. 2. Memory required for convolution layers weights of CIFAR-10 
network. For K×K kernel, separability causes K/2 reduction. The 
quantization further reduces the storage by 4 (8bits) to 6(5bits) times. 
The 3rd convolution layer employs 32x64 convolution connections. The 
required memory storage is reduced from 200 KB (32x64x5x5x32) to 
12.5-20 KB with quantized separable kernels. 

 (I) 

 (II) 
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introduces distortion. Secondly the word-length optimization 
is also noisy. These two noises when add up, degrades the 
network performance severely. Table 1 shows the network 
performance with directly quantized weights and kernels. 
C1, C3 and C5 represent convolution layers whereas F6 and 
F7 denote the rear end fully connected layers. We can find 
that direct quantization degrades the network performance. 
When the separability constraint is also imposed on the 
quantized kernels, the performance further degrades severely 
and the misclassification rate (MCR) shoots up by a bigger 
margin. The corresponding floating point MCR is much 
lower compared to the directly quantized separable network. 
This shows that re training the network is highly desired to 
compensate for these losses.  
 

 
We re-train the directly quantized network with our 
algorithm outlined in Fig. 3. We modify the error back 
propagation algorithm [12] in such a way that we can learn 
separable quantized kernels. During retraining we maintain 
both high and low precision weights. We initialize the 
network using the pre-trained floating point network. Each 
high precision 2D convolution kernel W is decomposed into 
two 1D vertical and horizontal filters (v, h) using SVD. At 
this stage both v and h are in high precision. We reconstruct 
the rank 1 high precision W(s) = v*h. The difference between 
W and W(s) (W – W(s)) depends on the linear independence of 
columns or row vectors of W. In our analysis, smoother error 
gradients are obtained when we update W with W(s) (W = 
W(s)). The v and h vectors are then quantized with M 
quantization levels and we obtain v(q) and h(q). These two 1D 
vectors now represent the 2D separable quantized kernel 
W(sq). The rear end fully connected layer weights are also 
quantized using L2 error minimization. These quantized 
kernels and weights are then used in the forward path of the 
network. This way the network output (and the network error 
= t - y) is driven by the quantization and separability 
constraints. The low precision weights and separable 
quantized kernels are used to propagate the output error 
backwards. The error is accumulated in high precision and 
floating point weights are updated. The newly obtained high 
precision weights are again made separable and quantized in 
the next iteration.  
 

 
We evaluate our proposed algorithm with two examples: 
handwritten digit recognition (MNIST) and a ten class 
general object recognition (CIFAR-10). We provide 

 
Fig. 4. The 5x5 high precision kernels are shown in the odd columns 
(1, 3, 5). The even columns show their corresponding separable and 
quantized (M=7) approximations.  

Fig. 3. Network retraining with quantized weights and separable 
kernels. The non-separable version of this algorithm is reported in [9] 
[10].  W shows single precision k×k kernel (3×3 here). W(sq) is a 
separable quantized kernel, E is the output error, Qs(.) and Qw(.) 
represents the signal and weight quantizer respectively,  f(.) is the 
activation function, i is the error signal of unit i.  
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misclassification results with three cases: high precision and 
non-separable, high precision and separable, quantized 
precision and separable. Fig. 4 compares some of the non-
separable high precision kernels with the re-trained 
quantized precision separable kernels. The separable 
quantized kernel shapes (even columns) exhibit the linear 
dependence between row or column vectors in a rank one 
matrix. During training, we used a mini batch size of 128 
and RMS prop [14]. Rectified linear units (ReLUs) are used 
as activation functions. For convergence and learning rate 
annealing, we set aside a subset of training samples as the 
validation set for both experiments. 
 

 
The CIFAR-10 dataset consists of ten classes: airplane, 
automobile, bird, cat, deer, dog, frog, horse, ship and truck 
[15]. The training set consists of 50,000 samples. Test set 
contains 10,000 samples. Each sample has 32x32 RGB 
resolution. We conduct the experiment with the CNN 
network having 3-32-32-32-32-64-64-10 feature maps. This 
network architecture is reported in [16]. All the three 
convolution layers use 5x5 kernels. The first subsampling 
layer employs max pooling while the second one uses 
average pooling. The results are reported in Table 2. The 
high precision network has MCR of 26.21% on the test set 
with overlapped pooling. The floating point precision 
network achieves MCR of 26.76% with separable kernels 
after retraining. Results in Table 2 shows that the resource 
efficient quantized networks achieve comparable 
performance with the floating point network.  

 
MNIST is a handwritten digit recognition dataset consisting 
of 60,000 training and 10,000 test samples [1]. Each sample 
is resized to 32x32 gray scale resolution. We conduct 
experiment with CNN architecture having 1-6-6-16-16-120-
84-10 layer-wise feature maps and rectified linear Units 
(ReLUs). Table 3 shows the classification results. The high 
precision separable network achieves MCR of 1.08% at 
convergence. The quantized precision separable network 
performs slightly better. To evaluate the effect of signal 

quantization on separable quantized weights and kernels, the 
hidden layers are quantized with 5 bits and the output layer 
is kept in high precision. The resulting network achieves 
MCR of 0.95%. These results show little effect of signal 
quantization and are consistent with other findings [9] [10]. 
The separable and fixed-point optimized network performs 
comparable classification with only 6.5% memory space 
consumption.  
 

 
Convolution layers that incur higher computational 
complexity are hot spots for optimizations. The separability 
constraint greatly reduces the computational cost and 
memory requirement. The constraint-less initial learning 
with floating point weights enables the network to achieve 
baseline performance while the late introduction of 
separability constraint and re-training ensures resource 
efficiency. The fixed-point optimization further reduces the 
word-length and results in power efficiency which may be 
crucial for embedded systems. Our technique is generic and 
is useful for both software and hardware implementations.  
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