
Sajid Anwar, Kyuyeon Hwang and Wonyong Sung

Department of Electrical and Computer Engineering
Seoul National University

Seoul, 08826 Korea
Email: sajid@dsp.snu.ac.kr, khwang@dsp.snu.ac.kr, wysung@snu.ac.kr

Deep convolutional neural networks have shown outstanding
performance in several speech and image recognition tasks.
However they demand high computational complexity which
limits their deployment in resource limited machines. The
proposed work lowers the hardware complexity by
constraining the learned convolutional kernels to be
separable and also reducing the word-length of these kernels
and other weights in the fully connected layers. To
compensate for the effect of direct quantization, a retraining
scheme that includes filter separation and quantization inside
of the adaptation procedure is developed in this work. The
filter separation reduces the number of parameters and
arithmetic operations by 60% for a 5x5 kernel, and the
quantization further lowers the precision of storage and
arithmetic by more than 80 to 90% when compared to a
floating-point algorithm. Experimental results on MNIST
and CIFAR-10 datasets are presented.

Index Terms— convolutional neural network, separable
kernels, word-length optimization

Deep convolutional neural networks (CNN) have shown
quite good performance at various computer vision
applications [1] [2]. A CNN network mainly consists of
three types of layers: convolution, pooling and fully
connected layers. Conceptually the convolution layers
perform feature extraction while the rear end fully connected
layers conduct classification. Usually most of the
computations are performed in the convolution layers [1] [2]
[3]. Further, bigger sized convolution kernels may have
improved representational capacity at the cost of increased
processing. It is therefore highly desired to optimize these
convolution layers. It was proposed by [4] that a 2D matrix

can be approximated with the product of two 1D vectors.
The singular value decomposition (SVD) was formally
introduced in [5] to approximate a set of filters with linear
combinations of a small number of basis functions.

A 3x3 Sobel edge detector example is shown in Fig. 1.
For a K x K filter, the count of weights is reduced to K + K
and the speedup is K2/2K. The principal of separability is
applied in [6] where two sets of separable and non-separable
filters are first learnt. The non-separable filters are then
approximated as linear combination of separable filters.
Jaderberg et al. performs low rank decomposition not only
for filters but also in the channel dimension [7]. In [8], the
memory and runtime cost is reduced with sparse
connectivity in convolution and fully connected layers.
Fixed-point optimization of DNN and CNN is proposed in
[9] [10] [11] for reduced memory and runtime costs.
However all these kernels are either non-separable or learnt
in high precision (32 bit).

The proposed work has two contributions. We first
approximate the separable kernels from non-separable ones
using SVD. This is followed by quantization with reduced
word-lengths for decreasing the computational and VLSI
implementation cost. In order to compensate for the

K =
1 0 12 0 21 0 1

= = 121 and = 1 0 1

Fig. 1. 2D separable Sobel filter decomposed into two 1D filters.
Convolving the input image having WH (width x height) dimensions
with a K x K convolution kernel requires WHKK multiplications and
additions. Separable kernels, however require WH(K+K)
multiplications and additions. This results in =

/((+)) = /2. Further we only need to save K+K weights
instead of K x K.

This work was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (MSIP) (No.
2015R1A2A1A10056051).

1065978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

performance loss due to filter separation and weigh
quantization, these operations are conducted inside of the
retraining process so that the network learns the effect of
these transforms and quantization.

The rest of the paper is organized as follows. Section 2
introduces separable kernels and the quantization algorithm.
Section 3 explains the retraining algorithm. Experimental
results are provided in Section 4. Finally, Section 5
concludes the work.

We first train the network with floating point weights using
error back propagation [12] and mini-batch gradient descent.
The network has the freedom to learn any kinds of filters and
no constraint is imposed on it at this stage. Each convolution
kernel is then decomposed into 3 matrices using SVD. Eq.
(I) and (II) shows this relationship. Matrix U and V are
orthogonal matrices and S is a diagonal matrix containing
singular values. The reconstructed matrix W will be rank 1 if
we only use S(1, 1) in Eq. (II).

The SVD kernels and weights in the fully connected layer
are then fixed-point optimized which is explained in the
following two subsections. The plots in Fig. 2 shows that
separability and quantization significantly reduce the
required memory for storing convolutional weights. The
kernels are only relevant for convolution layers. It is
important to note that SVD computation does not demand
any cost at the inference time since it is only computed
during training.

Components in a digital signal processing system may
exhibit varying level of sensitivity to quantization noise.
Therefore we use different quantization bits for each layer in

accordance to sensitivity analysis [10] [13]. The results
drawn in [10] shows that the rear layers of CNN are
comparatively more sensitive to quantization noise. Each
convolution kernel is treated independently and has its own
quantization step size. However each fully connected layer
has one quantization step size. Biases are kept in high
precision. Throughout this paper high precision refers to 32-
bit floating point. Eq. (1) to (7) in Listing 1 outlines the L2
error minimization criterion. The goal is to quantize the
input vector with an optimum quantization step size . This
criterion uses a uniform quantizer and bears similarity with
the Lloyd-Max quantization [9]. Q(x) represents the
quantization function, M represents the number of
quantization levels and z shows integer membership. When
M is 7, it demands 3 bits for weight representation. The
obtained quantized network shows degraded performance
compared to the floating point network.

Approximating a non-separable matrix with a rank1 matrix

Table 1 Fixed-point optimization without re-training
(CIFAR-10), floating point MCR = 26.21%

Separable
Kernels

Convolution
Layers (M Levels)

Rear Layers
(M Levels)

Test Set
MCR
(%) C1 C3 C5 F6 F7

No

3 3 3 7 31 77.63
42.36 7

15
7 7 15 31

15 15 31 63 47.02
31 31 31 63 63 32.74

Yes

3 3 3 7 31 81.55
7 7 7 15 31 60.59

15 15 15 31 63 59.82
31 31 31 63 63 59.46

Listing 1. Quantization with L2 error minimization [9] [10]

Fig. 2. Memory required for convolution layers weights of CIFAR-10
network. For K×K kernel, separability causes K/2 reduction. The
quantization further reduces the storage by 4 (8bits) to 6(5bits) times.
The 3rd convolution layer employs 32x64 convolution connections. The
required memory storage is reduced from 200 KB (32x64x5x5x32) to
12.5-20 KB with quantized separable kernels.

 (I)

 (II)

1066

introduces distortion. Secondly the word-length optimization
is also noisy. These two noises when add up, degrades the
network performance severely. Table 1 shows the network
performance with directly quantized weights and kernels.
C1, C3 and C5 represent convolution layers whereas F6 and
F7 denote the rear end fully connected layers. We can find
that direct quantization degrades the network performance.
When the separability constraint is also imposed on the
quantized kernels, the performance further degrades severely
and the misclassification rate (MCR) shoots up by a bigger
margin. The corresponding floating point MCR is much
lower compared to the directly quantized separable network.
This shows that re training the network is highly desired to
compensate for these losses.

We re-train the directly quantized network with our
algorithm outlined in Fig. 3. We modify the error back
propagation algorithm [12] in such a way that we can learn
separable quantized kernels. During retraining we maintain
both high and low precision weights. We initialize the
network using the pre-trained floating point network. Each
high precision 2D convolution kernel W is decomposed into
two 1D vertical and horizontal filters (v, h) using SVD. At
this stage both v and h are in high precision. We reconstruct
the rank 1 high precision W(s) = v*h. The difference between
W and W(s) (W – W(s)) depends on the linear independence of
columns or row vectors of W. In our analysis, smoother error
gradients are obtained when we update W with W(s) (W =
W(s)). The v and h vectors are then quantized with M
quantization levels and we obtain v(q) and h(q). These two 1D
vectors now represent the 2D separable quantized kernel
W(sq). The rear end fully connected layer weights are also
quantized using L2 error minimization. These quantized
kernels and weights are then used in the forward path of the
network. This way the network output (and the network error
= t - y) is driven by the quantization and separability
constraints. The low precision weights and separable
quantized kernels are used to propagate the output error
backwards. The error is accumulated in high precision and
floating point weights are updated. The newly obtained high
precision weights are again made separable and quantized in
the next iteration.

We evaluate our proposed algorithm with two examples:
handwritten digit recognition (MNIST) and a ten class
general object recognition (CIFAR-10). We provide

Fig. 4. The 5x5 high precision kernels are shown in the odd columns
(1, 3, 5). The even columns show their corresponding separable and
quantized (M=7) approximations.

Fig. 3. Network retraining with quantized weights and separable
kernels. The non-separable version of this algorithm is reported in [9]
[10]. W shows single precision k×k kernel (3×3 here). W(sq) is a
separable quantized kernel, E is the output error, Qs(.) and Qw(.)
represents the signal and weight quantizer respectively, f(.) is the
activation function, i is the error signal of unit i.

1067

misclassification results with three cases: high precision and
non-separable, high precision and separable, quantized
precision and separable. Fig. 4 compares some of the non-
separable high precision kernels with the re-trained
quantized precision separable kernels. The separable
quantized kernel shapes (even columns) exhibit the linear
dependence between row or column vectors in a rank one
matrix. During training, we used a mini batch size of 128
and RMS prop [14]. Rectified linear units (ReLUs) are used
as activation functions. For convergence and learning rate
annealing, we set aside a subset of training samples as the
validation set for both experiments.

The CIFAR-10 dataset consists of ten classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck
[15]. The training set consists of 50,000 samples. Test set
contains 10,000 samples. Each sample has 32x32 RGB
resolution. We conduct the experiment with the CNN
network having 3-32-32-32-32-64-64-10 feature maps. This
network architecture is reported in [16]. All the three
convolution layers use 5x5 kernels. The first subsampling
layer employs max pooling while the second one uses
average pooling. The results are reported in Table 2. The
high precision network has MCR of 26.21% on the test set
with overlapped pooling. The floating point precision
network achieves MCR of 26.76% with separable kernels
after retraining. Results in Table 2 shows that the resource
efficient quantized networks achieve comparable
performance with the floating point network.

MNIST is a handwritten digit recognition dataset consisting
of 60,000 training and 10,000 test samples [1]. Each sample
is resized to 32x32 gray scale resolution. We conduct
experiment with CNN architecture having 1-6-6-16-16-120-
84-10 layer-wise feature maps and rectified linear Units
(ReLUs). Table 3 shows the classification results. The high
precision separable network achieves MCR of 1.08% at
convergence. The quantized precision separable network
performs slightly better. To evaluate the effect of signal

quantization on separable quantized weights and kernels, the
hidden layers are quantized with 5 bits and the output layer
is kept in high precision. The resulting network achieves
MCR of 0.95%. These results show little effect of signal
quantization and are consistent with other findings [9] [10].
The separable and fixed-point optimized network performs
comparable classification with only 6.5% memory space
consumption.

Convolution layers that incur higher computational
complexity are hot spots for optimizations. The separability
constraint greatly reduces the computational cost and
memory requirement. The constraint-less initial learning
with floating point weights enables the network to achieve
baseline performance while the late introduction of
separability constraint and re-training ensures resource
efficiency. The fixed-point optimization further reduces the
word-length and results in power efficiency which may be
crucial for embedded systems. Our technique is generic and
is useful for both software and hardware implementations.

[1] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-
based learning applied to document recognition,” in Proc. of the
IEEE, vol. 86, no. 11, pp. 2278- 2324, 1998.
[2] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in Proc.
of the Advances in Neural Information Processing Systems, 2012.
[3] S. Karen and A. Zisserman, "Very deep convolutional networks
for large-scale image recognition." arXiv preprint arXiv:1409.1556
(2014).
[4] S. Treitel and J. Shanks, “The design of multistage separable
planar filters,” in IEEE Transactions on Geoscience Electronics,
vol. 9, no. 1, pp. 10-27, 1971.
[5] P. Perona, “Deformable kernels for early vision,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
17, no. 5, pp. 488-499, 1995.
[6] A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit and P. Fua,
“Learning separable filters,” in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 37, no. 1, pp. 94-106,
2015.

Table 2 CIFAR-10 retraining with fixed-point separable kernels,
MCRnon-sep-real = 26.21% and MCRsep-real = (26.76) %

Convolution Layers
(M Levels)

Rear Layers
(M Levels) Test Set

MCR (%) C1 C3 C5 F6 F7
3 3 3 7 31 33.05
7

15
7 7 15 31 27.58

15 15 31 63 26.73
31 31 31 63 63 26.88
63 63 63 63 63 26.79

Table 3 MNIST retraining with fixed-point separable kernels,
MCRnon-sep-real = 0.91% and MCRsep-real = 1.08%

Convolution Layers
(M Levels)

Rear Layers
(M Levels) Test Set

MCR (%) C1 C3 C5 F6 F7
3 3 3 7 31 1.12
7

15
7 7 15 31 0.94

15 15 31 63 1.03
31 31 31 63 63 1.01
63 63 63 63 63 1.08

1068

[7] M. Jaderberg, A. Vedaldi and A. Zisserman, “Speeding up
convolutional neural networks with low rank expansions,” arXiv
preprint arXiv:1405.3866 (2014).
[8] M. Collins and P. Kohli, “Memory bounded deep
convolutional networks,” arXiv preprint arXiv:1412.1442, 2012.
[9] K. Hwang and W. Sung, “Fixed-point feed forward deep neural
network design using weights +1, 0 and -1”, in Signal Processing
Systems (SiPS), 2014 IEEE workshop on, IEEE 2014.
[10] S. Anwar and W. Sung, “Fixed-point optimization of deep
convolutional neural for object recognition,” in Proc. of the IEEE
international conference on acoustics, speech, and signal
processing (ICASSP), 2015.
[11] K. Jonghong, K. Hwang, and W. Sung, "X1000 real-time
phoneme recognition VLSI using feed-forward deep neural
networks." in Proc. of the IEEE international conference on
acoustics, speech, and signal processing (ICASSP), 2014.
[12] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning
representations by back-propagating errors,” in Letters to Nature,
vol. 323, pp. 533-536, 1986.
[13] W. Sung and K.-I. Kum, “Simulation-based word-length
optimization method for fixed-point digital signal processing
systems,” Signal Processing, IEEE Transactions on, vol. 43, no.
12, pp. 3087–3090, 1995.
[14] G.E. Hinton, N Srivastava and K. Swersky, “Lecture 6e
rmsprop: Divide the gradient by a running average of its recent
magnitude,” 2012.
[15] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Master’s thesis, Department of Computer Science,
University of Toronto, 2009.
[16] A. Krizhevsky. Cuda-convnet [online]. Available:
https://code.google.com/p/cuda-convnet/

1069

