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ABSTRACT
Probabilistic inference is a versatile tool to solve a large variety of
pixel-labeling problems in computer vision such as stereo match-
ing and image denoising. Belief Propagation (BP) is an effective
method for such inference tasks, and has also shown attractive error-
resilience properties—the ability to converge to usable solutions in
the presence of low-level hardware errors. This is of increasing in-
terest, as the looming end of Moore’s Law scaling brings with it a
vast increase in the statistical variability of nanoscale circuit fabrics.
In this work we seek to understand why certain combinations of BP
and error-resilience mechanisms work so well in practice. We focus
on Algorithmic Noise Tolerance (ANT) techniques for the resilience
mechanisms, and Max-Product BP for inference. We analyze the
error characteristics of BP in this hardware context, derive novel
asymptotic error bounds, and provide theoretical reasoning to ex-
plain why ANT works well in this BP context. Experimental results
from detailed resilient-BP simulations for various stereo matching
tasks offer empirical support for this analysis.

Index Terms— Probabilistic inference, algorithmic noise toler-
ance, computer vision, belief propagation

1. INTRODUCTION
We are living in the “Big Data” era where “enormous amounts of
heterogeneous, semistructured and unstructured data are continually
generated at unprecedented scale” [1]. To analyze and extract in-
formation from such data at scale, many tools from machine learn-
ing have been successfully employed. Among them, probabilistic
graphical models (PGMs) are “an elegant framework which com-
bines uncertainty (probabilities) and logical structure (independence
constraints) to compactly represent complex, real-world phenom-
ena” [2], and probabilistic inference derives useful insights from the
PGM. More specifically, many “pixel-labeling” applications in com-
puter vision such as stereo matching and image denoising can be
mapped to maximum a posteriori (MAP) problems [3], which are
successfully solved by one of the most popular probabilistic infer-
ence algorithms, Max-Product belief propagation (BP) [4].

The versatility of probabilistic inference has attracted active re-
search on hardware implementation for the best performance per
watt. However, technologies at the end of the Moore’s law scaling
road-map show increasing non-idealities due to statistical parameter
variations. These cause erratic behavior of circuit components, hin-
dering robust and energy efficient hardware implementation [5]. To
effectively address this statistical upset, the statistical error compen-
sation (SEC) techniques exploit the shape of the distribution of errors
in the main computation and can achieve error resilience with mini-
mal extra overhead [6]. Many efforts (e.g., [7]) have shown that SEC
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techniques such as Algorithmic Noise Tolerance (ANT) can not only
significantly enhance the error resiliency of the overall hardware, but
also achieve order of magnitude energy savings.

Probabilistic inference algorithms have inherent resiliency to
small magnitude errors, and there have been many attempts to an-
alyze this error resiliency and further enhance it. Ihler et al. [8]
derived an error bound for BP, which implies inherent error re-
siliency, but it was only for the Sum-Product type. Varshney [9]
also exploited the inherent robustness of BP and showed that, given
enough iterations, BP-based LDPC decoding can be executed per-
fectly even in the presence of computation noise if the noise in the
computation is bounded. Huang et al. [10] proposed two techniques
(censoring and averaging) to improve error resiliency of BP and
proved that these techniques allow BP to converge even in the pres-
ence of noise. However, their tolerable error is restricted by many
constraints (e.g., censoring BP requires probability of incorrect out-
put to be low, ⇠ 5%). ANT has also been previously applied to
significantly enhance the error resiliency of BP. Results obtained by
Kim et al. [11] and Choi et al. [12] particularly demonstrate the ef-
fectiveness of ANT to handle high error rate (20 ⇠ 30%) with little
degradation in performance. But their claims were mainly based on
empirical study; theoretical understanding about why ANT is able
to achieve such favorable error enhancement with BP was missing.

In this paper, we provide new reasoning about the synergy be-
tween ANT and Max-Product BP, by theoretically deriving error
bounds similar to what Ihler et al. [8] achieved in Sum-Product BP
and providing empirical support for our analysis. The contributions
of this paper are as follows: 1) We extend the error analysis frame-
work of Ihler et al. [8] to drive asymptotic bounds on the dynamic
range of message errors in Max-Product BP. 2) We use this analysis
to provide an explanation for why ANT works well in the BP con-
text. 3) We provide simulation results from various stereo matching
tasks, not only to support our analysis, but also to claim that ANT
enables the control of inference quality via an independent design
variable separate from the choice of BP parameters and magnitude
of errors.

The rest of the paper is organized as follows. Section 2 provides
background information. Asymptotic bounds for Max-Product BP
are derived in Section 3. Section 4 describes the supporting simula-
tion results and Section 5 concludes the paper.

2. BACKGROUND
2.1. Algorithmic noise tolerance
Algorithmic noise tolerance (ANT) [11,13] is a statistical error com-
pensation technique that utilizes the statistics of errors to perform de-
tection and estimation for error compensation. It also incorporates
system level statistical metrics, such as signal-to-noise ratio (SNR)
or bit error rate (BER).

As shown in Fig. 1(a), ANT incorporates a main block and an
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Fig. 1. Block diagram: (a) algorithmic noise tolerance, and (b) error
distributions.

estimator. The main block is permitted to make hardware/timing
errors, but not the estimator. The estimator is a low-complexity block
(typically 5%-to-20% of the main block complexity) generating a
statistical estimate of the correct main block output, i.e.,

y

a

= y

o

+ ⌘ (1)
y

e

= y

o

+ e (2)

where y

a

is the actual main block output, y
o

is the error-free main
block output, ⌘ is the hardware error, y

e

is the estimator output, and
e is the estimation error. Error distributions of the main block and the
estimator are distinct, as shown in Fig. 1(b). Thus, the final output of
an ANT system ŷ can be obtained via the following decision rule:

ŷ =

(
y

a

, if |y
a

� y

e

| < ⌧

y

e

, otherwise
(3)

where ⌧ is an application-dependent parameter chosen to maximize
the performance of ANT.

2.2. Probabilistic Inference for Computer Vision

Many pixel labeling problems in computer vision can be formulated
as maximum a posteriori (MAP) problems. For example, stereo
matching sweeps to find matching pixels from a pair of stereo im-
ages and statistically infer depth based on their pixel-wise horizontal
displacement, which is inversely proportional to depth. Thus, stereo
matching can naturally be formulated as a MAP problem [14], where
we seek the most probable displacement (i.e., a set of disparity la-
bels), x = {x

s

, s 2 V}, given stereo images as observation, y,
written as:

argmax

x

P (x|y) = argmax

x

P (y|x)P (x). (4)

x

s

is a label in a discrete domain � associated with pixel s, and V
corresponds to all the pixels. P (x|y) is called the posterior, and it
is rephrased as a product of the likelihood, P (y|x), and the prior,
P (x), using Bayes rule.

For variety of MAP problems in computer vision applications,
it is common that the likelihood and prior are factorized along an
undirected graph model called a Markov Random Field (MRF), G =

(V, E), where each node is a random variable associated with a pixel
and each edge encodes the statistical relationship between the nodes,
written as:

P (y|x)P (x) _
Y

s2V

�

s

(x

s

, y

s

)

Y

(s,t)2E

�

st

(x

s

, x

t

). (5)

Factors �

s

and �

st

represent the likelihood of node s and the prior
of edge (s, t), respectively. In order to encourage “smooth” results
with label assignments, which is often preferred in pixel labeling
problems, the prior term is represented as:

�

st

(x

s

, x

t

) = exp{�� · !
st

·min {|x
s

� x

t

|p, ✓
max

}}, (6)

Table 1. MRF parameter configurations for different Middlebury
stereo matching tasks [3]

.

Tasks Size |�| � !

st

p ✓

max

Tsukuba 384x288 16 20 2 1 2
Venus 434x383 20 50 1 2 7
Teddy 450x375 60 10 3 1 1

where the parameters � and !

st

represent coupling strength of entire
edges and a specific edge st, respectively, ✓

max

is some bound in la-
bel disparity, and p is 1 or 2. (6) can represent linear/quadratic or
truncated-linear/quadratic constraints, or the Potts model [3], which
are the widely used priors in computer vision applications. For ex-
ample, Table 1 shows various parameter configurations for different
stereo matching tasks [3]. To gain intuition about error character-
istics of probabilistic inference for computer vision, we analyze the
impact of the coupling strength on the error resiliency of probabilis-
tic inference.

To find the best label assignment in (4), we often minimize the
objective called Energy = �log(P (y|x)P (x)), which is equiva-
lent to maximizing the posterior. In general, this energy minimiza-
tion is intractable as the complexity of the problem grows exponen-
tially with the size of the graph. However, one of the most popular
probabilistic inference algorithm, Max-Product belief propagation
(BP) [15], has been shown to effectively solve (4) via iteratively
passing information about the best label (i.e., message) for all the
nodes to their neighbors. In this work, we use a convergent variant
of Max-Product BP called sequential tree-reweighted message pass-
ing (TRW-S) [16] for evaluation of our analysis.

3. ERROR RESILIENCY OF MAX-PRODUCT BP UNDER
VARYING COUPLING STRENGTH

In this section, we analyze the error resiliency of Max-Product BP
by deriving its asymptotic error bounds. We first define the message
update rule for the Max-Product BP as

m

st

(x

t

) / max

xs
{�(x

s

, x

t

) · �
s

(x

s

) ·
Y

u2Nb(t)\s

m

us

(x

s

)}

= max

xs
{�(x

s

, x

t

) ·M
st

(x

s

)},
(7)

where Nb(t)\s is a set of nodes that are direct neighbors of a node t
excluding s. Also, assume that all the entries of �

s

and �

st

have
positive values and all the messages are initialized as a uniform
distribution. We now consider the case when arithmetic errors oc-
curred during the computation of (7), producing an erroneous mes-
sage m̂

st

(x

t

). We define an error as a ratio of the error-free message
and the erroneous message, e(x) , m̂(x)/m(x). Then, we can
write an erroneous message update as

m̂

st

(x

t

) / max

xs
{�(x

s

, x

t

) · �
s

(x

s

) ·
Y

u2Nb(t)\s

m̂

us

(x

s

)}

= max

xs
{�(x

s

, x

t

) ·M
st

(x

s

) · E
st

(x

s

)}.
(8)

where E

st

(x

s

) , Q
u2Nb(t)\s eus(xs

) and e

us

(x

s

) is an error in
message from node u to node s.

For Sum-Product BP (i.e.,
R

instead of max in (7)), Ihler et al.
have shown that the following bound holds [8]:

d(e

st

)  d(�

st

)

2
d(E

st

) + 1

d(�

st

)

2
+ d(E

st

)

, (9)
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where d(e

st

) denotes the dynamic range of error e
st

. The dynamic
range of a vector e(x) and a matrix �(x, y) are defined as

d(e(x)) , max

a,b

s
e(a)

e(b)

, d(�(x, y))

2 , max

a,b,c,d

�(a, b)

�(c, d)

. (10)

Therefore, log d(e) represents the largest difference among the en-
tries of e(x).

Equation (9) indicates that the dynamic range of errors on the
updated messages is bounded by both the dynamic range of �

ts

and
E

ts

. This can be seen by describing limiting behavior; d(e

ts

) 
d(�

ts

)

2 as d(E
ts

) ! 1, and d(e

ts

)  d(E

ts

) as d(�
ts

)

2 ! 1. In
other words, the increasing dynamic range of error in the incoming
messages has limited effect on the dynamic range of error in the
output message, implying the intrinsic error resiliency of the Sum-
Product BP.

The non-linearity of the max operation hinders direct extension
of the error analysis approach in [8] to Max-Product BP, but previous
work [12, 17] has shown that message passing inference based on
Max-Product BP also exhibits inherent error resiliency. Hence, one
can expect that a similar bound for the Max-Product inference would
exist. In the following theorem, we establish asymptotic bounds for
discrete label Max-Product BP for one particular form of the prior
term, which is widely used in computer vision.

Theorem 1. For discrete labels x, y 2 �, if the prior term � is

defined as follows:

�(x, y) , exp(��|x� y|p), p = 1 or 2.

Then, the following asymptotic bounds hold.

If d(�)

2 ! 1, then d(e)

2
= d(E)

2
,

If d(E)

2 ! 1, then d(e)

2  d(�)

4
.

(11)

Proof. We start from the definition of the dynamic range as follows:

d(e = m̂/m)

2
= max

a

{max

x

0{�(x0
, a) ·M(x

0
) · E(x

0
)}

max

x

{�(x, a) ·M(x)} }

·max

b

{ max

x

{�(x, b) ·M(x)}
max

x

0{�(x0
, b) ·M(x

0
) · E(x

0
)}}.

(12)

If d(�)

2 ! 1 (i.e., � ! 1), � dominates and the maximizing
argument should be one that maximizes �, which is when x = y

for �(x, y). Therefore, M(x) and M(x

0
) become either M(a) or

M(b). By dividing the common factors M(a) and M(b), we get
d(e)

2
= max

a

{E(a)} ·max

b

{1/E(b)} = d(E)

2.
Now consider the case when max

x

E(x) ! 1 and thus
d(E)

2 ! 1. Assume x

⇤
= argmax

x

E(x). Since max

x

E(x)

now dominates, the maximizing argument should be one that maxi-
mizes E. Therefore, the following holds:

max

x

0
{�(x0

, a)·M(x

0
)·E(x

0
)} = �(x

⇤
, a)·M(x

⇤
)·E(x

⇤
),

max

x

0
{�(x0

, b)·M(x

0
)·E(x

0
)} = �(x

⇤
, b)·M(x

⇤
)·E(x

⇤
).

(13)

By plugging (13) into d(e)

2,

d(e)

2
=max

a

{�(x
⇤
, a) ·M(x

⇤
) · E(x

⇤
)

max

x

{�(x, a) ·M(x)} }

·max

b

{ max

x

{�(x, b) ·M(x)}
�(x

⇤
, b) ·M(x

⇤
) · E(x

⇤
)

}.
(14)

Note that M(x

⇤
) and E(x

⇤
) are constants. By dividing the common

constants and defining �

max

= 1 and �

min

= exp(�� · ||�|�1|p),
we can obtain the following upper bound,

d(e)

2

max

a

{ �

max

max

x

{�(x, a) ·M(x)}}·max

b

{max

x

{�(x, b) ·M(x)}
�

min

}

{ �

max

�

min

·max

x

{M(x)}}·{
�

max

·max

x

{M(x)}}
�

min

}= �

2
max

�

2
min

=d(�)

4
.

In the above theorem, we can see that when the dynamic range
of errors in the input messages is high, the dynamic range of errors in
the output message is asymptotically bounded by d(�)

4 causing se-
vere degradation in the inference quality for high coupling strength
(�). This qualitative observation will be made more precise in the
following section where we experimentally show the impact of dy-
namic range of errors on the inference quality for TRW-S (one par-
ticular Max-Product type BP) and how ANT helps in enhancing its
error resiliency.

4. EMPIRICAL SUPPORT FOR THEORETICAL ERROR
ANALYSIS

In this section, we provide experimental results to support our the-
oretical analysis described in Section 3 and show how ANT can
enhance error resiliency of BP regardless of choice of coupling
strength. To evaluate the impact of error injection on the inference
quality, we employ the same software simulator used in [12], but
this time, we further change the coupling strengths � of the prior
term. We run TRW-S for the Tsukuba stereo matching task, but for
simplicity in analysis, we use only a linear prior term (i.e., p = 1)
with �. Errors with varying magnitudes (�2

15 ⇠ 2

15
) are in-

jected to the message computation with 10% injection rate. Fig. 2
shows the impact of the injected errors on the energy minimization
performance for the different coupling strength �. We measure
degradation of inference quality in terms of energy increment (re-
call: for Max-Product BP, a larger energy is a worse solution);
to measure the energy increment solely due to the error injection,
we offset the erroneous energy with the error free energy, i.e.,
Energy

erroneous

(�)� Energy

error�free

(�).
Overall, the TRW-S inference is resilient to the small magnitude

errors but vulnerable to the large magnitude ones. However, one
thing to note is that, as the error magnitude becomes large, more
degradation of inference quality can be observed as a larger � is
used. This trend is consistent with our analysis in (11) where as the
dynamic range of input errors becomes dominant, its impact on the
output error becomes more bounded by the dynamic range of the
prior term, i.e., the coupling strength � .

Next, we explore the impact of ANT on the quality of inference
with the erroneous message computation. We use a simple LSB-
truncated reduced precision replica (RPR) as our estimator of ANT;
we experiment with different levels of estimator bit precisions (6 bit
to 10 bit). Fig. 3(a) shows the degradation of inference quality vs.
error magnitude for different �. As can be seen, RPRs with larger
than 8-bit precision effectively compensate for the errors and main-
tain low degradation of inference quality. Also, as � increases, the
larger degradation of inference quality is observed for the case with-
out ANT. However, note that the error compensation of RPRs with
8-bit or larger precision is consistent regardless of �. This unique
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Fig. 3. (a) Inference quality vs. error injection for different coupling
strength and ANT, (b) Inference quality vs. coupling strength for
different error magnitude and ANT.

trend is more distinct if we plot the same graph as the degradation
of inference quality vs. �. As shown in Fig. 3(b), as the error
magnitude increases, the degradation of inference quality increases
more drastically as � increases. However, once protected by RPRs,
the degradation of inference quality becomes less affected by �. In
other words, ANT enhances the error resiliency of the message pass-
ing inference regardless of the coupling strength.

We can explain this trend using our error analysis. From (3), one
can show that the difference between the output of ANT y

ANT

and
the error-free output y

o

is bounded by the estimation error ✏ and the
ANT threshold ⌧ as follows:

|y
ANT

� y

o

|  ✏+ ⌧.

In other words, ANT can replace a large magnitude error with a
small magnitude one, decreasing the dynamic range of error. It is
to be noted that, in case of RPR, ✏ depends only upon estimator bit
precision. Therefore, from (11), the errors on the output that were
once bounded by the coupling strength due to large magnitude input
errors now become bounded by the input errors with low dynamic
ranges thanks to error compensation by ANT. Therefore, the error
resilience of the message passing inference can be greatly enhanced
by ANT regardless of the choice of coupling strength.

To verify our analysis, we perform stereo matching tasks with
erroneous TRW-S under more realistic MRF parameter configura-
tions; we run TRW-S for Tsukuba, Venus and Teddy using the dif-
ferent configurations specified in Table 1. In Fig. 4, which shows our
experimental results, it can be observed that when ANT with estima-
tor precision � 8-bit is applied, inference quality is preserved for all
values of coupling strength (�) and dynamic range of injected errors.
This observation supports our claim that ANT decouples the bound
on dynamic range of errors in the output messages from dynamic
range of errors in input messages and coupling strength, allowing the
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Fig. 4. Inference quality vs. coupling strength for different error
magnitude and ANT: (a) Tsukuba, (b) Venus, (c) Teddy.
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Fig. 5. Comparison of bad pixel ratio (BPR) for stereo matching of
Teddy task using TRW-S with different �s.

inference quality to solely depend on estimator bit-precision. This
also implies that with help of ANT, one can realize a variety of com-
puter vision applications using various coupling strengths running
on an erroneous computational fabric, since in the presence of ANT
the inference quality can be controlled by estimator bit-precision for
all possible choices of the coupling strength and dynamic range of
errors.

We further consider the impact of errors during message pass-
ing inference on the perceptual quality of the results. Fig. 5 shows
comparison of bad pixel ratio (BPR) for stereo matching of Teddy
task using TRW-S with different � (i.e., � = 4 or 10). When setting
up an MRF for stereo matching, large � is often preferred to encour-
age a smooth label assignment. The first row of Fig. 5 shows the
disparity maps of Teddy task with different �, and as expected, the
larger � achieves the lower BPR. However, as we discovered in the
previous sections, the larger � is, the more the quality of inference is
affected by errors, resulting in higher BPR, as shown in the second
row of Fig. 5. Then the last row of Fig. 5 shows that ANT with
8-bit precision RPRs can effectively compensate for the errors and
reduce BPR. This demonstrates that ANT can be used to enable error
resilient processing of TRW-S for a wider variety of MRF parameter
configurations.

5. CONCLUSION
In this work, we analyze the error characteristics of Max-Product be-
lief propagation (BP), and provide theoretical reasoning about why
its error resiliency can be successfully enhanced by ANT. From our
derivation of asymptotic error bounds of Max-Product BP, we claim
that ANT can effectively complement BP to alleviate its error prop-
agation. This claim is empirically supported by experimental results
from the well known Middlebury stereo matching benchmarks.
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