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ABSTRACT 
 

As world is moving towards Ultra High Definition (UHD) 

content and display technology, high quality visual content 

is becoming a necessity. Deblocking filter is one of the tools 

used in today’s video coding standards to enhance the 

quality of compressed video. Deblocking consumes 

significant percentage (≈20%-33%) of total decoding cycles. 

Therefore, many decoder implementations tend to offload 

deblocking operation to additional hardware IP block or 

GPU to achieve real-time performance. However, hardware 

IP increases die area and lacks flexibility; on other hand 

GPUs are power hungry. In this paper, we present a 

reconfigurable processor based software solution along with 

a deblocking specific intrinsic catering to wide range of 

video coding standards for handling this performance 

bottleneck. Our experimental results show, proposed 

approach improves deblocking performance by a factor 

greater than 10 and results in processing time in the order of 

140 ms for 4K UHD HEVC (60 fps, 30 mbps) stream. 
 

Index Terms — Deblocking, HEVC, Reconfigurable 

processor 
 

1. INTRODUCTION 
 

All video coding standards (like H.264, VC1, VP8, HEVC, 

VP9) that have come up after MPEG-4 Part 2 have adopted 

deblocking filter in the feedback path [1-6]. The purpose is 

two-fold. First, it helps to improve the quality of video by 

eliminating the blocky artefacts that are introduced in the 

reconstructed frames due to disjoint block wise processing 

and quantization. Second, by reducing the artefacts in the 

reconstructed frames in Decoded Picture Buffer, it improves 

the accuracy of inter-frame prediction and thereby improves 

the compression efficiency. 

Most of the deblocking algorithms use highly data-

dependent computation involving some decision tree model. 

Consequently, it becomes a challenge for the underlying 

processor to handle deblocking operation in resource 

efficient manner. Thus, many codec implementations usually 

find deblocking as a major bottleneck to achieve real-time 

performance.  

In such a scenario, researchers have come up with 

different hardware, software solutions. For example, on 

hardware side, Ozcan et al. proposed a hardware architecture 

with two data-paths in parallel, where each data-path can be 

configured to implement all decision and edge filter 

operations of HEVC deblocking [7]. Shen et al. proposed 

memory architecture for efficient transmission of data to the 

deblocking filter and the filtered outputs to an external 

memory, trying to reduce bandwidth [8]. On the software 

front, Yan et al. proposed a HEVC decoder implementation 

by exploiting Single Instruction Multiple Data (SIMD) 

parallelism in order to boost the performance [9]. Kotra et 

al. proposed implementations for the HEVC deblocking 

filter on multiple CPU cores [10]. Diego De Souza et al. 

proposed efficient implementations of HEVC deblocking 

filter for heterogeneous (multi-core CPU+GPU) platform 

[11]. 

Both lines of proposal have unique pros and cons. The 

problems with additional hardware IP are increased die area 

(i.e. increased gate-count) and lack of adaptability to the 

future algorithms. Whereas software-only solutions usually 

need high clock frequency and hence are not power efficient. 

Therefore, achieving power efficiency, real time 

performance, design flexibility and smaller gate count is a 

real challenge. 

 We believe, in order to achieve a balanced trade-off 

among all the afore-mentioned design parameters, we need a 

solution that comes mid-way between hardware only and 

software only design. We need a processor architecture, 

whose capability can be adjusted with the generic 

computational pattern of the algorithm. Also, we need a 

software implementation design that can maximally utilize 
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the architectural features and resources. Keeping both these 

points in mind, in this paper, we propose a highly efficient 

deblocking filter solution on reconfigurable architecture and 

present the results obtained with our implementation. We 

take HEVC decoder for the sake of illustration. 

The rest of the paper is organized as follows. In section 

2, we outline HEVC deblocking algorithm. Section 3 

includes brief description on Reconfigurable Processor. Our 

proposal of dual approach for handling deblocking filter is 

given in section 4. Section 5 contains the experimental 

results in detail. And finally, conclusion is drawn in the last 

section of the paper. 
 

2. DEBLOCKING ALGORITHM 
 

In HEVC, deblocking is applied to all samples adjacent to a 

Prediction Unit or Transform Unit boundary that does not 

coincide with video frame boundary. Slice and tile 

boundaries are also skipped, if syntax elements in Sequence 

Parameter Set and Slice header indicate so. Deblocking is 

applied on 8x8 grids (Figure 1) of luma and chroma 

samples. All vertical edges are filtered first. Then all 

horizontal edges are processed. In this paper, we describe 

the key steps involved in vertical luma edge filtering. 

Exactly similar steps are involved in horizontal luma edge 

filtering too. Detailed description about luma and chroma 

deblocking can be found in [12-14]. 

Few important control parameters of HEVC deblocking 

are Base Strength (BS), Quantization Parameter (QP), Local 

Adaptivity Measure (LAM) and QP dependent thresholds tc 

and β. BS value depends on intra-prediction flag, non-zero 

transform coefficient, reference indices, similarity / 

differences between motion vectors of two blocks P, Q that 

join at the edge (Figure 1). Possible BS values are 0, 1, and 

2 for luma edges, where 0 denotes no filtering. Horizontal 

LAM is obtained as in equation (1). 
 

 

Figure 1. Illustration of 8x8 block boundary and samples involved 

in vertical Luma edge filtering in HEVC 

 

Figure 2. Flow-chart for HEVC deblocking algorithm 

 

LAMH := (|p20 - 2p10 + p00| + |p23 - 2p13 + p03| +  

                 |q20 - 2q10 + q00| + |q23 - 2q13 + q03|)                         (1) 
 

For vertical edge filtering, if LAMH > β, type of filtering is 

decided with the following set of equations. 
 

CondAi := |p2i - 2p1i + p0i| + |q2i - 2q1i + q0i| < β/8; i = 0, 3        (2) 

CondBi := |p3i - p0i| + |q0i - q3i| < β/8; i = 0, 3                              (3) 

CondCi := |p0i - q0i| < 2.5tC; i = 0, 3                                                                  (4) 

CondDi := CondAi & CondBi & CondCi; i = 0, 3                         (5) 

CondEi := |d0i| < 10tC; i = 0, 1, 2, 3                           

  Where d0i = (9(q0i - p0i) - 3(q1i - p1i) + 8) >> 4        (6)  

CondF  := |p20 - 2p10 + p00| + |p23 - 2p13 + p03| < 3/16 β            (7) 

CondG := |q20 - 2q10 + q00| + |q23 - 2q13 + q03| < 3/16 β             (8) 

 

The overall HEVC deblocking control flow is explained 

using a flow-chart in Figure 2. A strong filtering influences 

three pixels on either side of the edge. In case of weak 

filtering, two pixels (adjacent to the edge element) in block 

P and Q are modified, if CondF and CondG are TRUE 

respectively. Otherwise, only the nearest pixel adjacent to 

the edge element is modified. 
 

3. RECONFIGURABLE PROCESSOR 
 

In recent past, reconfigurable processor (RP) has drawn 

much attention due to its high performance and yet high 

degree of adaptability with a wide range of computational 

demand of embedded applications [15-20]. Coarse Grained 

Reconfigurable Array (CGRA), the core component of RP, 

coupled with powerful software scheduler presents huge 

parallelism at very low power consumption [21-26].  
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Figure 3. Basic Block Diagram of RP 

 

Figure 3 shows the high level block diagram of RP that 

we have used in our experiment. It is similar to the 

Architecture for Dynamically Reconfigurable Embedded 

Systems (ADRES) designed by IMEC, Belgium [18]. It 

consists of a coarse-grained array of functional units (FU), 

global / local register files, internal data memory, instruction 

cache, configuration memory, and high speed buses for 

external data transfers. In a RP core, the FUs are arranged in 

form of regular NxN grid. In our case, value of N is 4. 

Capabilities of FUs vary widely; some are capable of 

multiplication, some can perform memory access operations, 

some might have SIMD capabilities, some may be equipped 

with application specific instructions or intrinsics etc. A RP 

core can be made to operate in either of the two modes: 

Very Long Instruction Word (VLIW) mode and Coarse-

Grained Array (CGA) mode. In VLIW mode, only limited 

number (typically 2 to 4) of FUs are available. And all N
2
 

FUs are available in CGA mode. VLIW mode is used for 

handling sequential control flow. CGA mode is meant for 

executing data massive computationally intensive loops 

comprising of unconditional statements. CGA compiler 

analyzes the dependencies among instructions inside a loop 

and also across successive loop iterations to exploit loop 

level parallelism (LLP) and arrives at a scheduling that 

maximizes the throughput. Switching between these two 

modes can happen seamlessly with the help of special 

instruction. RP core supports application specific 

instructions (ASI) in the form of intrinsic. Usually the ASIs 

are designed from the frequently used patterns or sequence 

of the basic instructions in the target applications. Adding 

new intrinsics will increase the gate-count. Hence, among 

the candidates ASIs, the processor architects choose the 

ones yielding the maximum performance boost without 

much increase in hardware cost such as gate counts, critical 

path length [25].  

4. PROPOSED DUAL APPROACH 

 

Our proposed solution resorts to a dual approach. At one 

hand, it introduces additional architectural capability to suit 

the need of the deblocking filtering algorithm. On the other 

hand, it proposes a novel algorithm partitioning approach to 

ensure maximal utilization of the architectural features and 

resources. 

 

4.1. Resource Efficient Algorithm Partitioning 

 

 RP is best fit to handle iterative execution of block of 

independent statements without branch / jump operations. 

Because, in such cases, loops can be mapped in CGA mode 

and all 16 FUs can be utilized. But, HEVC deblocking 

algorithm uses highly data-dependent computation along 

with multiple levels of decision tree. And iterative execution 

of such an algorithm cannot be mapped to CGA.  

An evident approach to enable CGA mapping of 

deblocking algorithm is branch predication. Branch 

predication is widely used technique in computer science to 

avoid conditional branch with the help of conditional 

instructions [27]. This means, each operation associated with 

TRUE and FALSE condition paths has to be converted to 

conditional instruction. The resultant CGA mapping helps to 

achieve considerable performance gain over VLIW because 

of higher FUs in CGA mode compared to VLIW mode and 

the loop level parallelism explored by the CGA compiler. 

However, this implementation may not produce an optimal 

performance, since both the TRUE and FALSE paths are 

executed all the time and it results in significant increase in 

number of instructions. And, many of the operations can’t be 

executed in parallel, since the highly dependent control and 

filtering paths of a deblocking algorithm are executed in the 

same loop. 

To produce an optimal solution by exploiting the full 

capability of CGA, we propose to partition the deblocking 

algorithm into two stages, namely analysis stage and filtering 

stage, as shown in Figure 4. In the analysis stage, we make 

the filtering decisions for all edge segments and store the 

offset information of only those edge elements that require 

filtering in an intermediate buffer. And in the filtering stage, 

we iterate over only the edge-elements entered into the offset 

buffer. The analysis loop can be operated in CGA mode with 

the help of the branch predication logic as discussed earlier. 

But, the filtering stage can now be efficiently mapped to 

CGA due to absence of conditional operations and also data 

inter-dependencies. The resultant CGA scheduling can now 

optimally exploit LLP to maximize the throughput. 

Moreover, as a good percentage of edge-elements do not 

require actual filtering, the proposed partitioning also avoids 

filtering for such edge-elements. Table 1 clearly shows the 

improvement in both ‘Cycles per Iteration’ (CPI) and 

‘Instructions per Cycle’ (IPC) with the proposed partitioning 

as compared to simple branch predication based approach.  
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Figure 4. Proposed Algorithm Partitioning 
 

Table 1. Percentage improvement in CPI and IPC for proposed 

approaches compared to branch predication  

 
 

4.2. Application Specific Intrinsics 
 

To further accelerate the performance of HEVC deblocking 

on RP, we propose a generic intrinsic for core deblocking 

operation. A generic computational pattern of deblocking 

filter across various video codec standards (H.264, VP8, 

VC1, HEVC and VP9) is used to form this intrinsic. The 

schematic diagram of proposed intrinsic is shown in Figure 

5. Due to hardware implementation, the deblocking intrinsic 

takes lesser number of cycles to produce output as compared 

to its software implementation. Also, this ASI helps the 

CGA compiler to achieve denser instruction scheduling. 

Benefit of intrinsic usage is shown in Table 1. 

 

Figure 5. Input output structure of deblocking intrinsic 

5. EXPERIMENTAL RESULTS 
 

We have implemented the proposed approaches on HM-15.0 

compliant HEVC decoder for RP. We created three different 

versions of the decoder; one with branch predication, second 

with algorithm partitioning and the third with both algorithm 

partitioning and intrinsic approaches. All three versions are 

tested using 4K UHD input streams with different bit-rates. 

Time (millisecond) spent in deblocking module alone is 

shown in Table 2. As it is evident from Table 2, significant 

improvement (around 90%) of processing time is achieved 

through our proposed approach. Figure 6 illustrates the 

percentage improvement in deblocking performance as 

compared to a simple branch predication based solution for 

3 different bit-rates. The intermediate buffer to hold offset 

information for all vertical edge elements of a 64x64 CTU 

needs only 1408 Byte [1152 Byte for Luma, 256 Byte for 

Chroma] and is easily manageable in any embedded system. 
 

Table 2. Milliseconds spent in deblocking module for different 4K 

UHD 4:2:0 inputs with 8-bit/pixel bit-depth, 60 frames/second 

frame-rate and 30 Mbps bit-rate  

 
 
 

 

Figure 6. Percentage improvement for different bit-rates with 

proposed dual approach compared to branch predication  

 

6. CONCLUSION 
 

In this paper, we present a reconfigurable processor based 

solution for handling computational load of deblocking 

algorithm used in recent video coding standards like HEVC. 

The proposed solution employs a dual approach. At one 

hand, it involves adjustment of processor capability with the 

generic computational pattern of the algorithm. On the other 

hand, the algorithm design and software implementation are 

modified for maximal utilization of architectural features 

and resources. Our approach helps to achieve more than 10x 

improvement in deblocking performance and results in 

processing time in the order of 140 ms for 4K UHD HEVC 

(60 fps, 30 mbps) stream. 
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