
EFFICIENT DEBLOCKING FILTER IMPLEMENTATION ON RECONFIGURABLE

PROCESSOR

Kausik Maiti
1
, Sirish K. Pasupuleti

1
, Raj N. Gadde

1
, SangJo Lee

2

1
Advanced Research Team, DMC.

Samsung R&D Institute India – Bangalore Pvt. Ltd. Bangalore, India

kausik.maiti@samsung.com, sirish.p@samsung.com, raj.gadde@samsung.com.

2
DMC R&D center, Multimedia Computing Lab.

Samsung Electronics Co., Ltd, Suwon-si, Republic of Korea

sjlee92@samsung.com.

ABSTRACT

As world is moving towards Ultra High Definition (UHD)

content and display technology, high quality visual content

is becoming a necessity. Deblocking filter is one of the tools

used in today’s video coding standards to enhance the

quality of compressed video. Deblocking consumes

significant percentage (≈20%-33%) of total decoding cycles.

Therefore, many decoder implementations tend to offload

deblocking operation to additional hardware IP block or

GPU to achieve real-time performance. However, hardware

IP increases die area and lacks flexibility; on other hand

GPUs are power hungry. In this paper, we present a

reconfigurable processor based software solution along with

a deblocking specific intrinsic catering to wide range of

video coding standards for handling this performance

bottleneck. Our experimental results show, proposed

approach improves deblocking performance by a factor

greater than 10 and results in processing time in the order of

140 ms for 4K UHD HEVC (60 fps, 30 mbps) stream.

Index Terms — Deblocking, HEVC, Reconfigurable

processor

1. INTRODUCTION

All video coding standards (like H.264, VC1, VP8, HEVC,

VP9) that have come up after MPEG-4 Part 2 have adopted

deblocking filter in the feedback path [1-6]. The purpose is

two-fold. First, it helps to improve the quality of video by

eliminating the blocky artefacts that are introduced in the

reconstructed frames due to disjoint block wise processing

and quantization. Second, by reducing the artefacts in the

reconstructed frames in Decoded Picture Buffer, it improves

the accuracy of inter-frame prediction and thereby improves

the compression efficiency.

Most of the deblocking algorithms use highly data-

dependent computation involving some decision tree model.

Consequently, it becomes a challenge for the underlying

processor to handle deblocking operation in resource

efficient manner. Thus, many codec implementations usually

find deblocking as a major bottleneck to achieve real-time

performance.

In such a scenario, researchers have come up with

different hardware, software solutions. For example, on

hardware side, Ozcan et al. proposed a hardware architecture

with two data-paths in parallel, where each data-path can be

configured to implement all decision and edge filter

operations of HEVC deblocking [7]. Shen et al. proposed

memory architecture for efficient transmission of data to the

deblocking filter and the filtered outputs to an external

memory, trying to reduce bandwidth [8]. On the software

front, Yan et al. proposed a HEVC decoder implementation

by exploiting Single Instruction Multiple Data (SIMD)

parallelism in order to boost the performance [9]. Kotra et

al. proposed implementations for the HEVC deblocking

filter on multiple CPU cores [10]. Diego De Souza et al.

proposed efficient implementations of HEVC deblocking

filter for heterogeneous (multi-core CPU+GPU) platform

[11].

Both lines of proposal have unique pros and cons. The

problems with additional hardware IP are increased die area

(i.e. increased gate-count) and lack of adaptability to the

future algorithms. Whereas software-only solutions usually

need high clock frequency and hence are not power efficient.

Therefore, achieving power efficiency, real time

performance, design flexibility and smaller gate count is a

real challenge.

 We believe, in order to achieve a balanced trade-off

among all the afore-mentioned design parameters, we need a

solution that comes mid-way between hardware only and

software only design. We need a processor architecture,

whose capability can be adjusted with the generic

computational pattern of the algorithm. Also, we need a

software implementation design that can maximally utilize

1050978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

the architectural features and resources. Keeping both these

points in mind, in this paper, we propose a highly efficient

deblocking filter solution on reconfigurable architecture and

present the results obtained with our implementation. We

take HEVC decoder for the sake of illustration.

The rest of the paper is organized as follows. In section

2, we outline HEVC deblocking algorithm. Section 3

includes brief description on Reconfigurable Processor. Our

proposal of dual approach for handling deblocking filter is

given in section 4. Section 5 contains the experimental

results in detail. And finally, conclusion is drawn in the last

section of the paper.

2. DEBLOCKING ALGORITHM

In HEVC, deblocking is applied to all samples adjacent to a

Prediction Unit or Transform Unit boundary that does not

coincide with video frame boundary. Slice and tile

boundaries are also skipped, if syntax elements in Sequence

Parameter Set and Slice header indicate so. Deblocking is

applied on 8x8 grids (Figure 1) of luma and chroma

samples. All vertical edges are filtered first. Then all

horizontal edges are processed. In this paper, we describe

the key steps involved in vertical luma edge filtering.

Exactly similar steps are involved in horizontal luma edge

filtering too. Detailed description about luma and chroma

deblocking can be found in [12-14].

Few important control parameters of HEVC deblocking

are Base Strength (BS), Quantization Parameter (QP), Local

Adaptivity Measure (LAM) and QP dependent thresholds tc

and β. BS value depends on intra-prediction flag, non-zero

transform coefficient, reference indices, similarity /

differences between motion vectors of two blocks P, Q that

join at the edge (Figure 1). Possible BS values are 0, 1, and

2 for luma edges, where 0 denotes no filtering. Horizontal

LAM is obtained as in equation (1).

Figure 1. Illustration of 8x8 block boundary and samples involved

in vertical Luma edge filtering in HEVC

Figure 2. Flow-chart for HEVC deblocking algorithm

LAMH := (|p20 - 2p10 + p00| + |p23 - 2p13 + p03| +

 |q20 - 2q10 + q00| + |q23 - 2q13 + q03|) (1)

For vertical edge filtering, if LAMH > β, type of filtering is

decided with the following set of equations.

CondAi := |p2i - 2p1i + p0i| + |q2i - 2q1i + q0i| < β/8; i = 0, 3 (2)

CondBi := |p3i - p0i| + |q0i - q3i| < β/8; i = 0, 3 (3)

CondCi := |p0i - q0i| < 2.5tC; i = 0, 3 (4)

CondDi := CondAi & CondBi & CondCi; i = 0, 3 (5)

CondEi := |d0i| < 10tC; i = 0, 1, 2, 3

 Where d0i = (9(q0i - p0i) - 3(q1i - p1i) + 8) >> 4 (6)

CondF := |p20 - 2p10 + p00| + |p23 - 2p13 + p03| < 3/16 β (7)

CondG := |q20 - 2q10 + q00| + |q23 - 2q13 + q03| < 3/16 β (8)

The overall HEVC deblocking control flow is explained

using a flow-chart in Figure 2. A strong filtering influences

three pixels on either side of the edge. In case of weak

filtering, two pixels (adjacent to the edge element) in block

P and Q are modified, if CondF and CondG are TRUE

respectively. Otherwise, only the nearest pixel adjacent to

the edge element is modified.

3. RECONFIGURABLE PROCESSOR

In recent past, reconfigurable processor (RP) has drawn

much attention due to its high performance and yet high

degree of adaptability with a wide range of computational

demand of embedded applications [15-20]. Coarse Grained

Reconfigurable Array (CGRA), the core component of RP,

coupled with powerful software scheduler presents huge

parallelism at very low power consumption [21-26].

1051

Figure 3. Basic Block Diagram of RP

Figure 3 shows the high level block diagram of RP that

we have used in our experiment. It is similar to the

Architecture for Dynamically Reconfigurable Embedded

Systems (ADRES) designed by IMEC, Belgium [18]. It

consists of a coarse-grained array of functional units (FU),

global / local register files, internal data memory, instruction

cache, configuration memory, and high speed buses for

external data transfers. In a RP core, the FUs are arranged in

form of regular NxN grid. In our case, value of N is 4.

Capabilities of FUs vary widely; some are capable of

multiplication, some can perform memory access operations,

some might have SIMD capabilities, some may be equipped

with application specific instructions or intrinsics etc. A RP

core can be made to operate in either of the two modes:

Very Long Instruction Word (VLIW) mode and Coarse-

Grained Array (CGA) mode. In VLIW mode, only limited

number (typically 2 to 4) of FUs are available. And all N
2

FUs are available in CGA mode. VLIW mode is used for

handling sequential control flow. CGA mode is meant for

executing data massive computationally intensive loops

comprising of unconditional statements. CGA compiler

analyzes the dependencies among instructions inside a loop

and also across successive loop iterations to exploit loop

level parallelism (LLP) and arrives at a scheduling that

maximizes the throughput. Switching between these two

modes can happen seamlessly with the help of special

instruction. RP core supports application specific

instructions (ASI) in the form of intrinsic. Usually the ASIs

are designed from the frequently used patterns or sequence

of the basic instructions in the target applications. Adding

new intrinsics will increase the gate-count. Hence, among

the candidates ASIs, the processor architects choose the

ones yielding the maximum performance boost without

much increase in hardware cost such as gate counts, critical

path length [25].

4. PROPOSED DUAL APPROACH

Our proposed solution resorts to a dual approach. At one

hand, it introduces additional architectural capability to suit

the need of the deblocking filtering algorithm. On the other

hand, it proposes a novel algorithm partitioning approach to

ensure maximal utilization of the architectural features and

resources.

4.1. Resource Efficient Algorithm Partitioning

 RP is best fit to handle iterative execution of block of

independent statements without branch / jump operations.

Because, in such cases, loops can be mapped in CGA mode

and all 16 FUs can be utilized. But, HEVC deblocking

algorithm uses highly data-dependent computation along

with multiple levels of decision tree. And iterative execution

of such an algorithm cannot be mapped to CGA.

An evident approach to enable CGA mapping of

deblocking algorithm is branch predication. Branch

predication is widely used technique in computer science to

avoid conditional branch with the help of conditional

instructions [27]. This means, each operation associated with

TRUE and FALSE condition paths has to be converted to

conditional instruction. The resultant CGA mapping helps to

achieve considerable performance gain over VLIW because

of higher FUs in CGA mode compared to VLIW mode and

the loop level parallelism explored by the CGA compiler.

However, this implementation may not produce an optimal

performance, since both the TRUE and FALSE paths are

executed all the time and it results in significant increase in

number of instructions. And, many of the operations can’t be

executed in parallel, since the highly dependent control and

filtering paths of a deblocking algorithm are executed in the

same loop.

To produce an optimal solution by exploiting the full

capability of CGA, we propose to partition the deblocking

algorithm into two stages, namely analysis stage and filtering

stage, as shown in Figure 4. In the analysis stage, we make

the filtering decisions for all edge segments and store the

offset information of only those edge elements that require

filtering in an intermediate buffer. And in the filtering stage,

we iterate over only the edge-elements entered into the offset

buffer. The analysis loop can be operated in CGA mode with

the help of the branch predication logic as discussed earlier.

But, the filtering stage can now be efficiently mapped to

CGA due to absence of conditional operations and also data

inter-dependencies. The resultant CGA scheduling can now

optimally exploit LLP to maximize the throughput.

Moreover, as a good percentage of edge-elements do not

require actual filtering, the proposed partitioning also avoids

filtering for such edge-elements. Table 1 clearly shows the

improvement in both ‘Cycles per Iteration’ (CPI) and

‘Instructions per Cycle’ (IPC) with the proposed partitioning

as compared to simple branch predication based approach.

1052

Figure 4. Proposed Algorithm Partitioning

Table 1. Percentage improvement in CPI and IPC for proposed

approaches compared to branch predication

4.2. Application Specific Intrinsics

To further accelerate the performance of HEVC deblocking

on RP, we propose a generic intrinsic for core deblocking

operation. A generic computational pattern of deblocking

filter across various video codec standards (H.264, VP8,

VC1, HEVC and VP9) is used to form this intrinsic. The

schematic diagram of proposed intrinsic is shown in Figure

5. Due to hardware implementation, the deblocking intrinsic

takes lesser number of cycles to produce output as compared

to its software implementation. Also, this ASI helps the

CGA compiler to achieve denser instruction scheduling.

Benefit of intrinsic usage is shown in Table 1.

Figure 5. Input output structure of deblocking intrinsic

5. EXPERIMENTAL RESULTS

We have implemented the proposed approaches on HM-15.0

compliant HEVC decoder for RP. We created three different

versions of the decoder; one with branch predication, second

with algorithm partitioning and the third with both algorithm

partitioning and intrinsic approaches. All three versions are

tested using 4K UHD input streams with different bit-rates.

Time (millisecond) spent in deblocking module alone is

shown in Table 2. As it is evident from Table 2, significant

improvement (around 90%) of processing time is achieved

through our proposed approach. Figure 6 illustrates the

percentage improvement in deblocking performance as

compared to a simple branch predication based solution for

3 different bit-rates. The intermediate buffer to hold offset

information for all vertical edge elements of a 64x64 CTU

needs only 1408 Byte [1152 Byte for Luma, 256 Byte for

Chroma] and is easily manageable in any embedded system.

Table 2. Milliseconds spent in deblocking module for different 4K

UHD 4:2:0 inputs with 8-bit/pixel bit-depth, 60 frames/second

frame-rate and 30 Mbps bit-rate

Figure 6. Percentage improvement for different bit-rates with

proposed dual approach compared to branch predication

6. CONCLUSION

In this paper, we present a reconfigurable processor based

solution for handling computational load of deblocking

algorithm used in recent video coding standards like HEVC.

The proposed solution employs a dual approach. At one

hand, it involves adjustment of processor capability with the

generic computational pattern of the algorithm. On the other

hand, the algorithm design and software implementation are

modified for maximal utilization of architectural features

and resources. Our approach helps to achieve more than 10x

improvement in deblocking performance and results in

processing time in the order of 140 ms for 4K UHD HEVC

(60 fps, 30 mbps) stream.

1053

7. REFERENCES

[1] “Information Technology - Generic Coding of Audio-Visual

Objects - Part 2: Visual,” MPEG-4 standard, ISO/IEC/ JTC

1/SC29/WG 11 N 2688, Seoul, March (1999).

[2] ITU-T VCEG and ISO/IEC MPEG, “Advanced video coding

for generic audiovisual services”, ITU-T Recommendation H.264

and ISO/IEC 14496-10(MPEG-4 AVC), Version 5, Feb. (2009).

[3] ITU-T Recommendation H.265 and ISO/IEC 23008-2, ITU-T

and ISO/IEC JTC 1, High Efficient Video Coding (HEVC), Apr.

2013.

[4] “SMPTE Standard: VC-1 Compressed Video Bitstream Format

and Decoding Process”, SMPTE 421M-(2006).

[5] De Simone, Francesca, et al. "Performance analysis of VP8

image and video compression based on subjective evaluations."

SPIE Optical Engineering + Applications. International Society for

Optics and Photonics, 2011.

[6] Mukherjee, Dipankar, et al. "The latest open-source video

codec VP9-an overview and preliminary results." Picture Coding

Symposium (PCS), 2013. IEEE, 2013.

[7] E. Ozcan, Y. Adibelli, and I. Hamzaoglu, “A high performance

deblocking filter hardware for high efficiency video coding,”

Consumer Electronics, IEEE Transactions on, vol. 59, no. 3, pp.

714–720, 2013.

[8] W. Shen, Q. Shang, S. Shen, Y. Fan, and X. Zeng, “A high-

throughput VLSI architecture for deblocking filter in HEVC,” in

Circuits and Systems (ISCAS), 2013 IEEE International

Symposium on, 2013, pp. 673–676.

[9] L. Yan, Y. Duan, J. Sun, and Z. Guo, “Implementation of

HEVC decoder on x86 processors with SIMD optimization,” in

Visual Communications and Image Processing (VCIP), 2012

IEEE, 2012, pp. 1–6.

[10] A. M. Kotra, M. Raulet, and O. Deforges, “Comparison of

different parallel implementations for deblocking filter of HEVC,”

in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE

International Conference on, 2013, pp. 2721–2725.

[11] De Souza, Diego F., Nuno Roma, and Leonel Sousa.

"Cooperative CPU+GPU deblocking filter parallelization for high

performance HEVC video codecs." Acoustics, Speech and Signal

Processing (ICASSP), 2014 IEEE International Conference on.

IEEE, 2014.

[12] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand,

“Overview of the high efficiency video coding (HEVC) standard,”

Circuits and Systems for Video Technology, IEEE Transactions

on, vol. 22, no. 12, pp. 1649–1668, 2012.

[13] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC

complexity and implementation analysis,” Circuits and Systems for

Video Technology, IEEE Transactions on, vol. 22, no. 12, pp.

1685–1696, 2012.

[14] A. Norkin, G. Bjøntegaard, A. Fuldseth, M. Narroschke, M.

Ikeda, K. Andersson, M. Zhou, and G. V. der Auwera, “HEVC

deblocking filter,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 22, no. 12, pp. 1746–1754, 2012.

[15] Page, Ian. “Reconfigurable processor architectures.”

Microprocessors and Microsystems 20.3 (1996): 185-196.

[16] Rabaey, Jan M. "Reconfigurable processing: the solution to

low-power programmable DSP." Acoustics, Speech, and Signal

Processing, 1997. ICASSP-97., 1997 IEEE International

Conference on. Vol. 1. IEEE, 1997.

[17] Bondalapati, Kiran, and Viktor K. Prasanna. “Reconfigurable

meshes: Theory and practice.” Reconfigurable Architectures

Workshop, International Parallel Processing Symposium. (1997).

[18] Mei, Bingfeng, et al. “ADRES: An architecture with tightly

coupled VLIW processor and coarse-grained reconfigurable

matrix.” Field Programmable Logic and Application. Springer

Berlin Heidelberg, 2003. 61-70.

[19] El-Ghazawi, Tarek, et al. "The promise of high-performance

reconfigurable computing." Computer 2 (2008): 69-76.

[20] Li, Yanbing, et al. “Hardware-software co-design of

embedded reconfigurable architectures.” Proceedings of the 37th

Annual Design Automation Conference. ACM, (2000).

[21] Barat, Francisco, Rudy Lauwereins, and Geert Deconinck.

“Reconfigurable instruction set processors from a

hardware/software perspective.” Software Engineering, IEEE

Transactions on 28.9 (2002): 847-862.

[22] Dimitroulakos, Grigoris, Michalis D. Galanis, and Costas E.

Goutis. “Performance improvements using coarse-grain

reconfigurable logic in embedded SOCs.” Field Programmable

Logic and Applications, 2005. International Conference on. IEEE,

(2005).

[23] Bouwens, Frank, et al. "Architectural exploration of the

ADRES coarse-grained reconfigurable array." Reconfigurable

Computing: Architectures, Tools and Applications. Springer Berlin

Heidelberg, 2007. 1-13.

[24] Joon Ho Song, Won Chang Lee, Doo Hyun Kim, Do-Hyung

Kim and Shihwa Lee, “Low-Power Video Decoding System Using

a Re-configurable Processor”, IEEE Conference on Consumer

Elec-tronincs (ICCE), pp. 532-533, (2012).

[25] Minwook Ahn, Soojung Ryu and Jeongwook Kim, “The

Acceleration of Various Multimedia Applications on

Reconfigurable Processor”, IEEE Conference on Consumer

Electronics (ICCE), pp. 238-239, (2013).

[26] Kim, Changmoo, et al. “ULP-SRP: Ultra Low-Power

Samsung Reconfigurable Processor for Biomedical Applications.”

ACM Transactions on Reconfigurable Technology and Systems

(TRETS) 7.3 (2014): 22.

[27] Taylor, Ryan, and Xiaoming Li. "Software-based branch

predication for AMD GPUs." ACM SIGARCH Computer

Architecture News 38.4 (2011): 66-72.

1054

