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ABSTRACT tions into massively parallel Hamming distance type compar

A memory-based search circuit is introduced in this pa-'sonS taking onI;O(l) time, 1.8, 1ts query time is a consta}n_t
2 . . regardless of the size of the dataset. This makes it an eiffficie
per. In this circuit, the conventional memory structureus-

. X . . fand scalable solution for similarity search.
tomized to provide equality comparison for each column o . : .
. ST In particular, a later improved version based on a novel de-
memory array, and a counting circuit is included at each col-.

ign, which is calle&Enhanced/ote Count (EVC), is a highly
umn to record the degree of matches between query and ret- - . ST s
) : 2 .~ _energy efficient version of vote count circuit, and its imple
erence data patterns. This customized memory circuit can .
o L . mentation on NAND flash memory structure, referred to as
be used for similarity search applications. Due to its mas-

. : ) . . EVC NAND, is introduced in [2, 3]. In EVC, instead of com-
sive parallel processing of equality comparisons and é¢ognt aring 1 hashina value at a ti hashing values (which is
operations, the search time using this circuit B43$) com- paring 9 me, g9

plexity. In addition, it uses NOR flash memory structure an eferred to as a sub-pattern and functionally similar toshha

Enhancedvote Count (EVC) interlocked design to achieve ey) are compared atatime. And the EVC NAND is designed

. ...~ ..such that a column draws current only if all values match
low power and high speed. Energy consumption is signifi-

canty educea, by approxte ok r 5 he mumberof 111 0¢ 1S, Vg whaL s eered o as erocked
simultaneously compared pattern bits in EVC), while match- n. P 9 y

: T . ingly, by approximately2”-fold, while matching speed is
ing speed isn times faster, compared to original vote count . S C

R times faster, compared to original vote count circuit imple
circuitimplemented on NOR flash memory structure.

mented on the NAND memory structure.

Index Terms— Vote Count, Memory Circuit, EVC Cir- In this paper, a prototype EVC chip based on NOR flash
cuit, Similarity Search memory structure is introduced. Itimplements the same-func
tionality of EVC NAND, but with NOR flash memory struc-
1. INTRODUCTION ture so as to achieve significantly higher processing speed,

with a reasonable trade-off in power consumption. In Sec-

Similarity search is vital in many application areas. In thetion 2, the proposed EVC chip is introduced with exemplary
context of nearest neighbor similarity search, the queny ve application on multimedia search. The performance of the
tor is compared with reference vectors, and the closesorgct Proposed chip will be detailed in Section 3.1 on the speed
to the query vector are identified as target items. To obtai@"d power consumption, and some simulation results on the
these results, the brute force approach is to compute the diBroposed system are given in Section 3.2. The conclusion is
tance between the query vector and all reference vectors ffawn in Section 4.
the dataset. This requires high computation, especiallgnvh
the feature dimension and the size of dataset are very high. 2. VOTE COUNT CIRCUITS

Vote Count (VC) algorithm [1, 2] is an effective approach
to solve the similarity search problem in very high dimensio The basic concept of Vote Count is as follows: first, both ref-
By usingp-stable distribution in the hashing process, high di-erence vectors and the query vector are converted into dis-
mension feature vectors are projected to discrete (tylgical crete vectors by some forms of deterministic hashing; riext,
binary) vectors. The similarities between the hashed querthe query vector's hashed dimensiois equal to a reference
vector and reference vectors are compared and the numbegctor's hash dimensiof) this reference vector's counter is
of hashed dimensions that compare equal is counted. At thiecreased by 1. Aftef rounds of vote counting, all reference
heart of the Vote Count and its later improved versions are itvectors whose vote counter value is at least a specifiedthres
customized memory circuits [1, 2, 3], which are also calledbld T" are reported as candidate matches and may be further
vote count circuits, where binary pattern matching and tounfiltered by a more rigorous criterion, e.g. Euclidean distan
ing operations occlgimultaneousljor eachvector, thus con-  This last step of filtering is also referred to as re-ranking.
verting complexO(n) time floating-point distance calcula- The Vote Count algorithm, if naively implemented using
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software, will have a very high time complexity @¥(n). B
Therefore, specialized hardware architecture, i.e. votet ol %S—
.

circuit, has been proposed. In original vote count circeit d Womid_ - prali L o
sign, there is a word-line for each row to access memory cell  wisi :“»E— —»a—

BL,
,_l_' Legend
Erased fGT
:] VG—| | requires Vo > mid
to conduct

Vg Programmed fGT
L requres ves i

to conduct

on that row, and there is a bit-line for each column to sense  ww i

one of the memory cells on that column. An implementa- WL mid

tion based on DRAM memory structure (referred to as VC

DRAM) is given in [1, 2, 3]. The charge and the voltage of WL hi :ﬁg—
l

In NAND Flash, typically
mid =0V, hi =45V

the DRAM capacitor depend on its stored value (0 or 1), in-  we.rmd -

fluence the bit-line (BL) voltage, and thus control the reatl o cees —HE
during a DRAM read access. When a single cell is being read, ]
the values of all cells in that row on the samatrix grid be- + lacnirogster

come available simultaneously. In VC DRAM, each column

has its own sense-amplifier to sense and read the bit value

stored in the cell belonging to that column. After each read,

the comparison result may affect the counter for each column _ _
. . . . . report column id using priority encoder circuit

This forms the basic hardware architecture implementieg th with column clear flag after each report

Vote Count algorithm. This original vote count circuit cam b

implemented with different memory structures. Fig. 1. A NAND flash based EVC implementation. For
Enhanced/ote count (EVC) [2, 3] is a highly efficient al- brevity, only 1 set of NAND string is shown for each data

ternative to the the original vote count circuit, while kirgp ~ entry (bit-line) in the database. In actual implementation

the essence of vote counting concept. In this design, idstedl’ = % NAND strings will be connected to each bit-line

of comparing one value at a timey values are compared at in a way similar to VC DRAM to suppotE’ comparison and

a time. The number of comparison and counter update opegounter update operations.

ations is reduced significantly by, times when comparing

TL
g B

to the original vote count circuit implemented on same mem- Bit line
ory structure. In Fig. 1, a low power EVC circuit based on the Word line
structure of NAND flash memory (referred to as EVC NAND)

is given. In EVC NAND, NAND flash is formed by connect-
ing several floating gate transistors (fGTs) in series (togre

called a NAND string). During reading, all other fGTs are .
given ahi V; to ensure they conduct, bunaid V¢ is applied Fig. 2. NOR flash memory.

to the fGT Of interest (denoted Fl) Thés ensure a” Other matched W|th query data pattern_ EVC NOR does not have
fGTs forming conductive Channels, and if F1is erasadljdl the property of a column drawing current 0n|y when the pat_
Ve is enough to form a conductive channel in F1, and currenfern matches like EVC NAND, rather, its power consump-
will flow in the series. If F1 is programmedhid will notbe  tjon is similar to that of original vote count circuit imple-
enough to form a conductive channel in F1, and the series willyented on the NOR flash memory structure (referred to as
notconduct. Thus the presence of current (or lackof) decodegc NOR). However, because it can compatevalues at a
charge state of F1 and its respective bit value. With the majme, it can operaten times faster than VC NOR, making
trix layout, themid andhi are applied to all {GTs on the same jts energy per search is times less. It is also much faster
row, respectively. And the EVC architecture is designedsucihan EVC NAND, with eachn-bit comparison taking tens of
that a Column dl‘aWS current Only |f aHL Values matCh Wlth nanoseconds instead Of a fethlS Of microseconds_
the query’s by using what is referred to as thierlockedde- Based on the proposed NOR flash EVC circuit, a proto-
sign, where 2 cells are used to represent 1 pattern bit. Powgype chip (as shown in Fig. 3) has been designed and fab-
consumption is thus reduced significantly accordingly sinc ricated in 0.1@m process. In this prototype chip, there are
only the matched NAND string will draw current and hence (24 word-lines and.024 bit-lines which can accommodate
consume power. 1024 reference vectors to be retrieved simultaneously. Due
To further speed up the comparison process, a NOR flado theinterlockeddesign where 2 cells are used to represent
memory structure (Fig. 2) is proposed to implement the EVQ pattern bit, each feature vector after hashing may have up
functionality, which we refer to as EVC NOR. In this circuit, to 512 dimensions. To minimize the changes to the under-
theinterlockeddesign is also adopted, but the exact notatiorlying flash memory circuit, this chip retained the mux that
is different from that of EVC NAND. Similar to Fig. 1, each shares each sense-amplifier with 32 columns. Therefore, 32
counter will only be increased when a cluster of thespairs ~ pattern matching cycles (instead of 1 cycle in a fully opti-
of interlockedcells in the same column as the counter aremized version), where each cycle is 60ns, are required te com
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Table 1. Time complexity of original vote count circuit and EVC diitwith different memory structure implementations
DRAM implementation| NAND implementation| NOR implementation
original vote count circuit L Tpar L Tser L - Tpar

EVC circuit Lo Lot

17, V1)

DRAM read access time, with typically,, ~ 25 — 50ns,
and s, is the NAND flash read access time with typically
Tser = b — 50us. The read access time of NOR flash is simi-
lar to ther,,, of DRAM. Generally, the speed of EVC NOR
is about 100 to 1000 times faster than that of EVC NAND,
making it well suited for fast search applications. In term
of power consumption, EVC NOR achieves< reduction in
energy per search over VC NOR. For EVC NOR, search time
is L/m - Tqr, hence energy consumption of the matrix per
Fig. 3. Prototype EVC chip based on NOR flash memorysearch Escarch) 1S Prmatriz - L/m - Tpar. OUr tests on the
structure. EVC NOR prototype chip show that,,, = 60ns. Power
consumption of the EVC prototype chip,q:.-i.- iS @about 5 to
6mw.

Note that to achieve the same search accuracy, the hashed
feature vector length in EVC will generally be larger thaatth
in VC, implying higher memory transistor usage but with the
benefit of significantly lower power and energy consumption.
Same as the discussion in [3], since the hashed feature vec-
tor length is usually no more than a few hundred, it can be
seen that, when - d is around 10000, where is the size of
dataset and! is the dimension of the feature vectors, brute
. force kNN scheme has similar time complexity to that of the

Fig. 4. PCB board. VC NOR and EVC NOR. When - d increases furthek,NN

pletely evaluate one:-bit comparison operation. Atest PCB would present increasingly higher time complexity thart tha
(Fig. 4) is also designed to mount the EVC prototype Chippf VC NOR and EVC NOR, thus making vote count circuit a
and integrate with an FPGA development board (specificallynore favored solution. For example, in [4] = 8 x 107 train-
Zyng ZC702) for writing the reference vectors into the flashing images ¢ = 19 largest PCA dimensions out of 3072) are
memory, controlling the comparison operations, readirgg thused to provide object and scene recognition, implyingastle
comparison results, and communicating with the host PC thdt.5sec (or 30sec per [4]) to recognize one query image. Al-

is running multimedia search applications. though rr_1u|ti_ple processors can be used to redidd time
With this proposed system, similarity search problem carfomplexity, it would proportionally add to system cost. In
be easily implemented with Vote Count algorithm. contrast, even with a conservatié = 50 andr,,, = 60ns,

EVC NOR would only take- 3 us. When using the EVC pro-
totype chip, which due to chip design complexity constint
having to take 32 (instead of 1) matching cycles to fully eval
uating anm-bit comparison, it will take~ 96 us, which is
still much faster than software based solutions. Furtheemo
EVC circuit has a significant speed and power advantage ovéhe high data density of memory chips enables scalabitiy, a
conventional search systems, especially with larg&hisis  is the additional advantage of EVC.

because EVC’s matching is done for bits simultaneously,

Iegding tomx speeding up over original vote count circuit 3 5  gimulation result

which is already much faster than software-based search alg

rithms. A simple time complexity comparison for vote countBased on EVC NOR chip, we have designed and imple-
circuits with different memory structure implementatides mented an exemplary similar image search system to evaluate
given in Table 1. It is shown that, when the underlying mem+ts performance. As introduced in Sec. 2, this chip haz!

ory structure is the same, EVC circuit presents fasterthan  word-lines andl024 bit-lines. The number of data vectors
that of the original vote count circuit. In Table 4,,, is the is limited to 1024. We randomly choos&024 images from

3. PERFORMANCE ANALYSIS

3.1. Speed and power consumption
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Table 2. Competitive Analysis with Commercial Software and Openr8e Toolkits

Performance Metrics (1 Million DB EVC Open Source Toolkitg
items, find top-100 matches) low-density high-density | Multi-index Hashing
Search Speed 0.139ms 6.5us 3ms
Energy per Search 0.75m.J 0.03mJ 150mJ
Physical Space 50cm? - 1em | 1 —2cm? - 1em desktop PC

Caltech 101 dataset [5]. GIST descriptors [6] of these image

computed at three different scales (8, 8, 4) are used for test

ing, and the feature dimension is 320 before hashigN

search based on the Euclidean distance calculated from GIST

vectors is used as ground truth. Considering the interddck 3
design, each data vector can have at nid& dimensions

after binary hashing. So, the projection number is set to

L = 512. The simulation results are presented based on the

average behavior over the entire dataset with leave-ohe-ou * . - . 25
cross validation. We present the recall of (approximated) *
kNN search using Hamming distance calculated from VC (@) kNN

and EVC on the proposed system for accuracy evaluation.

In this chip, 32 (i.e. 16 pairs) memory cells are con-
nected in a sector (similar to a string in NAND Flash). It
can be configured as = 8 or 16. Generally, larger value
of m means higher computational efficiency (faster speed)
and higher power saving. However, the recall may drop with
largerm value when the projection numbgéris the same. In

this simulation, we configure. = 8 for evaluation. The aver- 04

age recalls okNN results based on VC and EVC on the pro- 0s
posed system are presented in Fig. 5 (a). It is observed that, s O % P
EVC performance is not as good as that of VC. Inherently, . .

this is because the projection numieis the same, whereas (b) kNN with re-ranking

EVC can only have count up th/m, i.e., onlyL/m + 1

unique counts or Hamming distances (instead ef 1inthe  Fig 5. Comparison oftNN performance between VC and
VC) to differentiate similar items vs. dissimilar items imet  £v/C with proposed systenf.=512,m=8.

dataset. This can be improved with a higher number of pro-

jections. And this can also be improved with the concept ofircuit, the chip can still search at 20 times faster than
Weak b|t as proposed in [7] Neverthe'essy WWh:S, EVC MIH, When eXtrapOIated to a lOOO'Ch|p Configuration Capa'

NOR can search 8 times faster and be 8 times more enerdy€e of supporting 1 million vectors. This is shown in Table 2,
efficient than VC NOR. column "EVC low-density”. The "EVC high-density” col-

umn estimates how a fully optimized EVC NOR chip based

approach. To get nearest neighborg candidates are re- system would perform on the same test. Such chip will be
trieved by VC and EVC with proposed system. These canPased on a more advanced node such as 55nm process, and
didates are then checked with Euclidean distance to find thaave the32 : 1 mux removed, so that every column has its
topk nearest neighbors. With re-ranking approach, the searcVn sense-amplifier.

accuracies are improved significantly with a limited incea

Next, we gave simulation result féNN with re-ranking

in computational cost. As shown in Fig. 5 (b), both VC and 4. CONCLUSION
EVC with proposed system present significant improvement
over the original approaches. In this paper, a customized NOR flash memory based EVC

Last, we compared EVC performance against Multi-Indexchip is introduced. With this chip, paralleled processiag f
Hashing (MIH) [8], a state-of-art Hamming distance basechigh dimension large dataset search becomes possible. The
kNN algorithm. We ran MIH with a database of 1 million chip also has low power consumption. We further use the
64-bit hash vectors on a Dell Precision T7500 (Intel Xeoncustomized chip to implement an exemplary similar image
CPU, X5650 @2.67GHz). Despite3@x slowdown in search search system and the performance has been presented with
speed due to th82 : 1 mux retained in the flash memory promising result.
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