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ABSTRACT

A memory-based search circuit is introduced in this pa-
per. In this circuit, the conventional memory structure is cus-
tomized to provide equality comparison for each column of
memory array, and a counting circuit is included at each col-
umn to record the degree of matches between query and ref-
erence data patterns. This customized memory circuit can
be used for similarity search applications. Due to its mas-
sive parallel processing of equality comparisons and counting
operations, the search time using this circuit hasO(1) com-
plexity. In addition, it uses NOR flash memory structure and
EnhancedVote Count (EVC) interlocked design to achieve
low power and high speed. Energy consumption is signifi-
cantly reduced, by approximatelym-fold (m is the number of
simultaneously compared pattern bits in EVC), while match-
ing speed ism times faster, compared to original vote count
circuit implemented on NOR flash memory structure.

Index Terms— Vote Count, Memory Circuit, EVC Cir-
cuit, Similarity Search

1. INTRODUCTION

Similarity search is vital in many application areas. In the
context of nearest neighbor similarity search, the query vec-
tor is compared with reference vectors, and the closest vectors
to the query vector are identified as target items. To obtain
these results, the brute force approach is to compute the dis-
tance between the query vector and all reference vectors in
the dataset. This requires high computation, especially when
the feature dimension and the size of dataset are very high.

Vote Count (VC) algorithm [1, 2] is an effective approach
to solve the similarity search problem in very high dimension.
By usingp-stable distribution in the hashing process, high di-
mension feature vectors are projected to discrete (typically
binary) vectors. The similarities between the hashed query
vector and reference vectors are compared and the number
of hashed dimensions that compare equal is counted. At the
heart of the Vote Count and its later improved versions are its
customized memory circuits [1, 2, 3], which are also called
vote count circuits, where binary pattern matching and count-
ing operations occursimultaneouslyfor eachvector, thus con-
verting complexO(n) time floating-point distance calcula-

tions into massively parallel Hamming distance type compar-
isons taking onlyO(1) time, i.e., its query time is a constant
regardless of the size of the dataset. This makes it an efficient
and scalable solution for similarity search.

In particular, a later improved version based on a novel de-
sign, which is calledEnhancedVote Count (EVC), is a highly
energy efficient version of vote count circuit, and its imple-
mentation on NAND flash memory structure, referred to as
EVC NAND, is introduced in [2, 3]. In EVC, instead of com-
paring 1 hashing value at a time,m hashing values (which is
referred to as a sub-pattern and functionally similar to a hash
key) are compared at a time. And the EVC NAND is designed
such that a column draws current only if allm values match
with the query’s, using what is referred to as theinterlocked
design. Power consumption is thus greatly reduced accord-
ingly, by approximately2m-fold, while matching speed ism
times faster, compared to original vote count circuit imple-
mented on the NAND memory structure.

In this paper, a prototype EVC chip based on NOR flash
memory structure is introduced. It implements the same func-
tionality of EVC NAND, but with NOR flash memory struc-
ture so as to achieve significantly higher processing speed,
with a reasonable trade-off in power consumption. In Sec-
tion 2, the proposed EVC chip is introduced with exemplary
application on multimedia search. The performance of the
proposed chip will be detailed in Section 3.1 on the speed
and power consumption, and some simulation results on the
proposed system are given in Section 3.2. The conclusion is
drawn in Section 4.

2. VOTE COUNT CIRCUITS

The basic concept of Vote Count is as follows: first, both ref-
erence vectors and the query vector are converted into dis-
crete vectors by some forms of deterministic hashing; next,if
the query vector’s hashed dimensioni is equal to a reference
vector’s hash dimensioni, this reference vector’s counter is
increased by 1. AfterL rounds of vote counting, all reference
vectors whose vote counter value is at least a specified thresh-
old T are reported as candidate matches and may be further
filtered by a more rigorous criterion, e.g. Euclidean distance.
This last step of filtering is also referred to as re-ranking.

The Vote Count algorithm, if naively implemented using
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software, will have a very high time complexity ofO(n).
Therefore, specialized hardware architecture, i.e. vote count
circuit, has been proposed. In original vote count circuit de-
sign, there is a word-line for each row to access memory cell
on that row, and there is a bit-line for each column to sense
one of the memory cells on that column. An implementa-
tion based on DRAM memory structure (referred to as VC
DRAM) is given in [1, 2, 3]. The charge and the voltage of
the DRAM capacitor depend on its stored value (0 or 1), in-
fluence the bit-line (BL) voltage, and thus control the read out
during a DRAM read access. When a single cell is being read,
the values of all cells in that row on the samematrix grid be-
come available simultaneously. In VC DRAM, each column
has its own sense-amplifier to sense and read the bit value
stored in the cell belonging to that column. After each read,
the comparison result may affect the counter for each column.
This forms the basic hardware architecture implementing the
Vote Count algorithm. This original vote count circuit can be
implemented with different memory structures.

Enhancedvote count (EVC) [2, 3] is a highly efficient al-
ternative to the the original vote count circuit, while keeping
the essence of vote counting concept. In this design, instead
of comparing one value at a time,m values are compared at
a time. The number of comparison and counter update oper-
ations is reduced significantly bym times when comparing
to the original vote count circuit implemented on same mem-
ory structure. In Fig. 1, a low power EVC circuit based on the
structure of NAND flash memory (referred to as EVC NAND)
is given. In EVC NAND, NAND flash is formed by connect-
ing several floating gate transistors (fGTs) in series (together
called a NAND string). During reading, all other fGTs are
given ahi VG to ensure they conduct, but amidVG is applied
to the fGT of interest (denoted F1). Thehi’s ensure all other
fGTs forming conductive channels, and if F1 is erased, amid
VG is enough to form a conductive channel in F1, and current
will flow in the series. If F1 is programmed,mid will not be
enough to form a conductive channel in F1, and the series will
notconduct. Thus the presence of current (or lackof) decodes
charge state of F1 and its respective bit value. With the ma-
trix layout, themidandhi are applied to all fGTs on the same
row, respectively. And the EVC architecture is designed such
that a column draws current only if allm values match with
the query’s by using what is referred to as theinterlockedde-
sign, where 2 cells are used to represent 1 pattern bit. Power
consumption is thus reduced significantly accordingly since
only the matched NAND string will draw current and hence
consume power.

To further speed up the comparison process, a NOR flash
memory structure (Fig. 2) is proposed to implement the EVC
functionality, which we refer to as EVC NOR. In this circuit,
the interlockeddesign is also adopted, but the exact notation
is different from that of EVC NAND. Similar to Fig. 1, each
counter will only be increased when a cluster of thesem pairs
of interlockedcells in the same column as the counter are
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Fig. 2. NOR flash memory.

matched with query data pattern. EVC NOR does not have
the property of a column drawing current only when the pat-
tern matches like EVC NAND, rather, its power consump-
tion is similar to that of original vote count circuit imple-
mented on the NOR flash memory structure (referred to as
VC NOR). However, because it can comparem values at a
time, it can operatem times faster than VC NOR, making
its energy per search ism times less. It is also much faster
than EVC NAND, with eachm-bit comparison taking tens of
nanoseconds instead of a few totens of microseconds.

Based on the proposed NOR flash EVC circuit, a proto-
type chip (as shown in Fig. 3) has been designed and fab-
ricated in 0.18µm process. In this prototype chip, there are
1024 word-lines and1024 bit-lines which can accommodate
1024 reference vectors to be retrieved simultaneously. Due
to the interlockeddesign where 2 cells are used to represent
1 pattern bit, each feature vector after hashing may have up
to 512 dimensions. To minimize the changes to the under-
lying flash memory circuit, this chip retained the mux that
shares each sense-amplifier with 32 columns. Therefore, 32
pattern matching cycles (instead of 1 cycle in a fully opti-
mized version), where each cycle is 60ns, are required to com-
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Table 1. Time complexity of original vote count circuit and EVC circuit with different memory structure implementations
DRAM implementation NAND implementation NOR implementation

original vote count circuit L · τpar L · τser L · τpar
EVC circuit L

m
· τser

L
m

· τpar

Fig. 3. Prototype EVC chip based on NOR flash memory
structure.

Fig. 4. PCB board.

pletely evaluate onem-bit comparison operation. A test PCB
(Fig. 4) is also designed to mount the EVC prototype chip,
and integrate with an FPGA development board (specifically,
Zynq ZC702) for writing the reference vectors into the flash
memory, controlling the comparison operations, reading the
comparison results, and communicating with the host PC that
is running multimedia search applications.

With this proposed system, similarity search problem can
be easily implemented with Vote Count algorithm.

3. PERFORMANCE ANALYSIS

3.1. Speed and power consumption

EVC circuit has a significant speed and power advantage over
conventional search systems, especially with largem. This is
because EVC’s matching is done form bits simultaneously,
leading tom× speeding up over original vote count circuit
which is already much faster than software-based search algo-
rithms. A simple time complexity comparison for vote count
circuits with different memory structure implementationsis
given in Table 1. It is shown that, when the underlying mem-
ory structure is the same, EVC circuit presentsm× faster than
that of the original vote count circuit. In Table 1,τpar is the

DRAM read access time, with typicallyτpar ≈ 25 − 50ns,
andτser is the NAND flash read access time with typically
τser ≈ 5− 50µs. The read access time of NOR flash is simi-
lar to theτpar of DRAM. Generally, the speed of EVC NOR
is about 100 to 1000 times faster than that of EVC NAND,
making it well suited for fast search applications. In term
of power consumption, EVC NOR achievesm× reduction in
energy per search over VC NOR. For EVC NOR, search time
is L/m · τpar, hence energy consumption of the matrix per
search (Esearch) is Pmatrix · L/m · τpar. Our tests on the
EVC NOR prototype chip show thatτpar = 60ns. Power
consumption of the EVC prototype chipPmatrix is about 5 to
6mW.

Note that to achieve the same search accuracy, the hashed
feature vector length in EVC will generally be larger than that
in VC, implying higher memory transistor usage but with the
benefit of significantly lower power and energy consumption.
Same as the discussion in [3], since the hashed feature vec-
tor length is usually no more than a few hundred, it can be
seen that, whenn · d is around 10000, wheren is the size of
dataset andd is the dimension of the feature vectors, brute
forcekNN scheme has similar time complexity to that of the
VC NOR and EVC NOR. Whenn · d increases further,kNN
would present increasingly higher time complexity than that
of VC NOR and EVC NOR, thus making vote count circuit a
more favored solution. For example, in [4],n = 8×107 train-
ing images (d = 19 largest PCA dimensions out of 3072) are
used to provide object and scene recognition, implying at least
1.5sec (or 30sec per [4]) to recognize one query image. Al-
though multiple processors can be used to reducekNN time
complexity, it would proportionally add to system cost. In
contrast, even with a conservativeL′ = 50 andτpar = 60ns,
EVC NOR would only take∼ 3µs. When using the EVC pro-
totype chip, which due to chip design complexity constraints
having to take 32 (instead of 1) matching cycles to fully eval-
uating anm-bit comparison, it will take∼ 96µs, which is
still much faster than software based solutions. Furthermore,
the high data density of memory chips enables scalability, and
is the additional advantage of EVC.

3.2. Simulation result

Based on EVC NOR chip, we have designed and imple-
mented an exemplary similar image search system to evaluate
its performance. As introduced in Sec. 2, this chip has1024
word-lines and1024 bit-lines. The number of data vectors
is limited to 1024. We randomly choose1024 images from
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Table 2. Competitive Analysis with Commercial Software and Open Source Toolkits
Performance Metrics (1 Million DB EVC Open Source Toolkits

items, find top-100 matches) low-density high-density Multi-index Hashing
Search Speed 0.139ms 6.5µs 3ms

Energy per Search 0.75mJ 0.03mJ 150mJ
Physical Space 50cm2

· 1cm 1− 2cm2
· 1cm desktop PC

Caltech 101 dataset [5]. GIST descriptors [6] of these images
computed at three different scales (8, 8, 4) are used for test-
ing, and the feature dimension is 320 before hashing.kNN
search based on the Euclidean distance calculated from GIST
vectors is used as ground truth. Considering the inter-locked
design, each data vector can have at most512 dimensions
after binary hashing. So, the projection number is set to
L = 512. The simulation results are presented based on the
average behavior over the entire dataset with leave-one-out
cross validation. We present the recall of (approximated)
kNN search using Hamming distance calculated from VC
and EVC on the proposed system for accuracy evaluation.

In this chip, 32 (i.e. 16 pairs) memory cells are con-
nected in a sector (similar to a string in NAND Flash). It
can be configured asm = 8 or 16. Generally, larger value
of m means higher computational efficiency (faster speed)
and higher power saving. However, the recall may drop with
largerm value when the projection numberL is the same. In
this simulation, we configurem = 8 for evaluation. The aver-
age recalls ofkNN results based on VC and EVC on the pro-
posed system are presented in Fig. 5 (a). It is observed that,
EVC performance is not as good as that of VC. Inherently,
this is because the projection numberL is the same, whereas
EVC can only have count up toL/m, i.e., onlyL/m + 1
unique counts or Hamming distances (instead ofL+ 1 in the
VC) to differentiate similar items vs. dissimilar items in the
dataset. This can be improved with a higher number of pro-
jections. And this can also be improved with the concept of
weak bit as proposed in [7]. Nevertheless, withm=8, EVC
NOR can search 8 times faster and be 8 times more energy
efficient than VC NOR.

Next, we gave simulation result forkNN with re-ranking
approach. To getk nearest neighbors,2k candidates are re-
trieved by VC and EVC with proposed system. These can-
didates are then checked with Euclidean distance to find the
topk nearest neighbors. With re-ranking approach, the search
accuracies are improved significantly with a limited increase
in computational cost. As shown in Fig. 5 (b), both VC and
EVC with proposed system present significant improvement
over the original approaches.

Last, we compared EVC performance against Multi-Index
Hashing (MIH) [8], a state-of-art Hamming distance based
kNN algorithm. We ran MIH with a database of 1 million
64-bit hash vectors on a Dell Precision T7500 (Intel Xeon
CPU, X5650 @2.67GHz). Despite a32× slowdown in search
speed due to the32 : 1 mux retained in the flash memory
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Fig. 5. Comparison ofkNN performance between VC and
EVC with proposed system.L=512,m=8.

circuit, the chip can still search at> 20 times faster than
MIH, when extrapolated to a 1000-chip configuration capa-
ble of supporting 1 million vectors. This is shown in Table 2,
column ”EVC low-density”. The ”EVC high-density” col-
umn estimates how a fully optimized EVC NOR chip based
system would perform on the same test. Such chip will be
based on a more advanced node such as 55nm process, and
have the32 : 1 mux removed, so that every column has its
own sense-amplifier.

4. CONCLUSION

In this paper, a customized NOR flash memory based EVC
chip is introduced. With this chip, paralleled processing for
high dimension large dataset search becomes possible. The
chip also has low power consumption. We further use the
customized chip to implement an exemplary similar image
search system and the performance has been presented with
promising result.
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