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Abstract—This paper introduces a design of a gammatone
filter based on stochastic computation for area-efficient hard-
ware. The gammatone filter well expresses the performance of
human auditory peripheral mechanism and has a potential of
improving advanced speech communications systems, especially
hearing assisting devices and noise robust speech recognition
systems. Using stochastic computation, a power-and-area hungry
multiplier used in a digital filter is replaced by a simple logic gate,
leading to area-efficient hardware. However, a straightforward
implementation of the stochastic gammatone filter suffers from
significantly low accuracy in computation, which results in a
low dynamic range (a ratio of the maximum to minimum
magnitude) due to a small value of a filter gain. To improve the
computational accuracy, gain-balancing techniques are presented
that represent the original gain as the product of multiple larger
gains introduced at the second-order sections. As a result, the
proposed techniques maintain the original gain of the filter while
improving the computational accuracy. The proposed stochastic
gammatone filters are designed and evaluated using MATLAB
that achieves a high dynamic range of 71.71 dB compared
with a low dynamic range of 5.47 dB in the straightforward
implementation.

Keywords-stochastic logic, gammatone filter, auditory filter, IIR
filter, digital circuit implementation

I. INTRODUCTION

Brainware (brain-inspired) computing and LSI (BLSI) im-

plementations have been recently studied that achieves a

significant cognition capability compared to a traditional com-

putation based approach [1]–[3]. For brainware auditory signal

processing, a gammatone filter that has a similar response

to the impulse responses of basilar membrane [4], [5] is

a promising technique for advanced speech communications

systems, such as cochlear implants [6]–[8] and noise robust

speech recognitions [9].

However, the gammatone filter requires high computational

power as the function of the gammatone filter is complex.

Several VLSI implementations have been studied using analog

[6], [7] or digital circuits. [8] In analog implementations,

the complex function of the gammatone filter is efficiently

designed, leading to low-power and low-area hardware, while

they suffer from process variations, especially in advanced

CMOS processes. In digital implementations, the gammatone

filter is designed using a high-order infinite impulse response

(IIR) filter. However, a large number of multipliers are re-

quired, causing large power dissipation and large area.

In this paper, we introduce a gammatone filter based on

stochastic computation. Stochastic computation [10], [11] is a

Frequency[Hz]

102 103 104 105

M
a

g
n

it
u

d
e

 [
d

B
]

-100

-80

-60

-40

-20

0 fc = 0.5  kHz
fc = 1 kHz
fc = 2 kHz
fc = 5 kHz
fc =10 kHz

Fig. 1. Frequency responses of five gammatone filters, where fc are 0.5, 1,
2, 5, and 10 kHz.

purely-digital implementation technique that represents data

as streams of random bits, while a power-and-area hungry

multiplier used in a digital IIR filter is replaced by a sim-

ple logic gate, leading to area-efficient hardware. First, a

stochastic gammatone filter is designed using a straightforward

implementation technique and is then analyzed in terms of

a dynamic range. Note that the dynamic range is used as

a ratio of the maximum to minimum magnitude throughout

the paper. Based on the analysis, the straightforward imple-

mentation suffers from significantly low computation accuracy

due to a small value of a filter gain, which results in a low

dynamic range. To increase the dynamic range, two gain-

balancing techniques are proposed. The proposed gammatone

filters are designed and evaluated using MATLAB, achieving

a high dynamic range of 71.71 dB while the straightforward

implementation has a very small dynamic range of 5.47 dB. To

the best of our knowledge, this is the first hardware algorithm

and architecture of a gammatone filter based on stochastic

computation.

The rest of the paper is organized as follows. Section II

reviews the gammatone filter and designs it using cascaded

second-order sections. Section III describes the stochastic

gammatone filter based on the gain-balancing techniques.

Section IV evaluates the magnitude responses of the stochastic

gammatone filter compared with a floating-point result. Sec-

tion V concludes this paper.

II. GAMMATONE FILTER

A. Transformation of gammatone filter

A gammatone filter is represented by an impulse response

that is the product of a gamma distribution and a sinusoidal

tone as follows:

g(t) = atn−1e−2πbERB(fc)t cos(2πfct+ φ) (t > 0), (1)
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Fig. 2. Block diagram of four cascaded second-order sections for gammatone
filters.

where a is a constant, n is the order of the filter, b is the

bandwidth of the filter, fc is the center frequency of the

filter, and φ is the steering phase. The equation can represent

the human auditory filter when n is 4 and b is 1.019 times

Equivalent Rectangular Bandwidth (ERB) [4]. The ERB can

be approximated [5] as follows:

ERB(fc) = 24.7(4.37fc/1000 + 1). (2)

In this paper, a is set to 1 and φ is set to 0 as [7]. The frequency

responses of the gammatone filters are shown in Fig. 1, where

fc are 0.5, 1, 2, 5, and 10 kHz.

The gammatone impulse response is converted to that in the

frequency domain using the Laplace transform, which is then

converted to a digital IIR filter using the bilinear transform

with a fc of 5 kHz and a sampling frequency fs of 20 kHz used

in this paper. The transfer function in digital domain, H(z),
is described using an 8th-order digital IIR filter as follows:

H(z) =
b0 + b1z

−1 + ...+ b8z
−8

1 + a1z−1 + ...+ a8z−8
, (3)

where bn (0 ≤ n ≤ 8) and am (1 ≤ m ≤ 8) are coefficients.

B. Implementation using cascaded second-order sections

The 8th-order IIR filter for the gammatone response is

factorized to form four second-order sections as follows:

H(z) = G
4∏

k=1

b0k + b1kz
−1 + b2kz

−2

1 + a1kz−1 + a2kz−2
, (4)

= G

4∏

k=1

Hk(z) = G

4∏

k=1

Nk(z)

Dk(z)
, (5)

where G is a gain, the transfer function of the feedforward

block is defined as Nk(z) and that of the feedback block

is defined as 1/Dk(z). The four second-order sections are

described as shown in Fig. 2, where each section is designed

using a second-order IIR filter.

Fig. 3 shows magnitudes of frequency responses in the four

cascaded second-order IIR filter for a gammatone response,

where the center frequency is 0.5π rad. At each section, the

maximum magnitude of the transfer function, max|Hk(e
jω)|,

is larger than 1. In contrast, the maximum magnitude of

the transfer function, max|H(ejω)|, is 1 (0 dB) as G is

6.795 × 10−5. In the next section, a gammatone filter based

on stochastic computation is designed using the four cascaded

IIR filter.
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Fig. 3. Magnitudes of frequency responses in the four cascaded second-order
IIR filter for a gammatone response, where the center frequency is 0.5π rad.
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Fig. 4. Stochastic computation blocks: (a) multiplier in unipolar coding, (b)
multiplier in bipolar coding, and (c) scaled adder.

III. STOCHASTIC IMPLEMENTATION OF GAMMATONE

FILTER

A. Stochastic computation

Stochastic computation has been recently exploited for

several applications, such as low-density parity-code (LDPC)

decoding [12], [13], image processing [14]–[16], and digital

filters [17]–[19]. In stochastic computation, information is

carried by the frequency of ones in a sequence in one of two

formats: unipolar and bipolar coding. Note the probability of

observing a ‘1’ to be Pa =Pr(a(t) = 1) for a sequence of bits

a(t). A value a is a = Pa, (0 ≤ a ≤ 1) in unipolar coding

and is a = (2 · Pa − 1), (−1 ≤ a ≤ 1) in bipolar coding.

A multiplier is simply designed using a simple logic gate

[11], such as a 2-input AND gate in unipolar coding or a 2-

input XNOR gate in bipolar coding shown in Fig. 4 (a) and (b).

The output probability, Pc, is (Pa · Pb) in unipolar coding. In

the example shown in Fig. 4 (a), input values are represented

using 10 bits and are multiplied with 10 clock cycles. Fig.

4 (c) shows a block diagram of a two-input scaled addition

designed using a two-input multiplexor, unlike a binary full

adder. The output probability, Pc, is Ps · (Pa +Pb), where Ps

is a probability of a selector input to the multiplexor.

B. Circuit implementation

The gammatone filter is designed using the IIR filter with

cascaded form consisting of four second-order sections shown

in Fig. 2, where the magnitude responses are summarized in

Fig. 3. The absolute values of several coefficients, b0k, b1k, b2k,

are larger than ‘1’ . For example, b21 is -4.7077. These
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Fig. 5. Second-order IIR filter based on stochastic computation in bipolar
coding, where multiplications and additions are realized using stochastic logic.

coefficients needs to be normalized as stochastic computation

can represent a value of −1 to 1. The normalizing factor, nk,

is defined as follows:

nk =
1

mk

, (6)

mk ≥ max(|b0k |, |b1k |, |b2k |), (7)

where mk = {2l | l = 0, 1, ...}. Using Eq. (6), the transfer

function at each section is derived as follows:

Hk(z) =
nk(b0k + b1kz

−1 + b2kz
−2)

1 + a1kz−1 + a2kz−2
·
1

nk

. (8)

Fig. 5 shows a block diagram of a second-order IIR fil-

ter based on stochastic computation in bipolar coding. The

stochastic IIR filter is designed based on [19]. In the stochastic

IIR filter, multiplications are realized using XNOR gates and

additions are realized using multiplexors. The input signal in

binary format is converted to a stochastic bit stream using

a binary-to-stochastic (B2S) converter, where the bit length

is Nsto (the number of stochastic bits to represent a real

value). Delay elements are realized using stochastic-to-binary

(S2B) converters that are ⌈log2Nsto⌉-bit counter. The details

of B2S and S2B are shown in [19]. As an output signal of the

addition is scaled down, the output signal after S2B is scaled

up in binary domain based on binary multiplication. For simple

hardware, the binary multiplication is designed using a binary

shifter.

A different stochastic implementation of a second-order

IIR filter is described in Fig. 6. It is designed based on

binary/stochastic hybrid logic, where additions are realized

in binary domain instead of stochastic domain. In a specific

application, the hybrid computation can improve computation

accuracy with a small area overhead [20] compared with an

implementation based on only stochastic computation. The

hybrid IIR filter can be designed in bipolar coding as shown in

Fig. 6 or unipolar coding that exploits a stochastic bit stream

with a sign bit.
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Fig. 7. Second-order IIR filter based on: (a) the globally gain balancing
(GGB) technique and (b) the locally gain balancing (LGB) technique

C. Gain balancing

Using Eqs. (4), (8), a stochastic gammatone filter can be

designed as a straightforward implementation. But, a small

value of the gain, G, needs to be represented, causing low

computation accuracy in stochastic computation. To avoid

representing a small value, a globally gain balancing (GGB)

technique is presented. In GGB, an input signal is scaled at

each section as shown in Fig. 7 (a), while a multiplication with

G as shown in Fig. 2 is removed. The scaling factor at each

section, Gk, is determined based on the L∞ norm of Hk(e
jω)

as follows:

Gk =
1

max|Hk (ejω)|
. (9)

Using Eq. (9), the transfer function of the gammatone filter

based on GGB is derived as follows:

H(z) =
4∏

k=1

GkHk(z). (10)

In addition, Gk, is locally balanced to a feedback gain, g0k,

and a feedforward gain, g1k at each section as shown in Fig. 7

(b). In the locally gain balancing (LGB) technique, g0k is first

determined based on the L∞ norm of 1/Dk(e
jω) as follows:

g0k =
1

max|1/Dk(ejω)|
=

Gk

g1k
. (11)

Then, g1k is determined. Using Eq. (11), the transfer function
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Fig. 8. Magnitude responses of gammatone filters based on bipolar coding,
where Nsto is 216 . The proposed LGB technique increases the dynamic range
to 42.77 dB compared with 5.47 dB of the straightforward implementation.
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of the gammatone filter based on LGB is derived as follows:

H(z) =
4∏

k=1

g0k
g1k(b0k + b1kz

−1 + b2kz
−2)

1 + a1kz−1 + a2kz−2
. (12)

IV. EVALUATION

The gammatone filters based on stochastic computation

are designed and evaluated using MATLAB, where fc is 5

kHz and fs is 20 kHz. Fig. 8 shows magnitude responses

of gammatone filters in bipolar coding, where Nsto (the

number of stochastic bits to represent a real value) is 216.

The magnitudes are averaged by 100-trial outputs obtained

using a sinusoidal wave as an input signal, x. Based on the

straightforward implementation, the dynamic rage is just 5.47

dB, showing a failure operation as gammatone filtering. It is

because a small value of G reduces the computation accuracy.

In contrast, using the GGB and the LGB techniques, the

dynamic ranges are increased to 35.25 dB and 42.77 dB,

respectively. However, the maximum magnitudes do not reach

to 0 dB that a floating-point filter achieves.

Fig. 9 shows magnitude responses of gammatone filters

based on the LGB technique, where Nsto is 216. The filters

are also designed based on binary/stochastic hybrid compu-

tation. Using the hybrid computation, the dynamic ranges

are increased to 51.51 dB in bipolar coding and 71.71 dB

in unipolar coding. In addition, the maximum magnitudes

reach to almost 0 dB as well as the floating-point result. The
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Fig. 11. Ten transient responses of the stochastic gammatone filter based on
the hybrid computation in unipolar coding, where Nsto is 2

16 and the input
signal is a sinusoidal wave at 8 kHz. T (= 1/fs) is the sample time of the
gammatone filter.

magnitude responses are varied depending on Nsto as shown

in Fig. 10.

Fig. 11 shows ten transient responses of the stochastic

gammatone filter based on the hybrid computation in unipolar

coding, where Nsto is 216 and the input signal is a sinusoidal

wave at 8 kHz. Gammatone responses appear in the simula-

tion, but, at each trial, they are slightly different because of

stochastic (random) computation.

V. CONCLUSION

In this paper, the gammatone filter based on stochastic com-

putation has been presented for area-efficient hardware. The

straightforward implementation of the stochastic gammatone

filter designed using the cascaded second-order IIR filter is

evaluated that causes the very low dynamic range due to the

very small value of the filter gain. To increase the dynamic

range, the gain-balancing techniques have been proposed that

split the original small gain to multiple larger gains. Using the

gain-balancing techniques, the computation accuracy at each

IIR filter is improved, leading to a high dynamic range. As

a result, the proposed stochastic gammatone filter achieves a

high dynamic range of 71.71 dB compared with a low dynamic

range of 5.47 dB in the straightforward implementation.

Future works include a reduction of the number of stochastic

bits using different filter structures, such as a lattice structure

and a state-space implementation, and performance evaluation

in hardware.
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