
SIMD-based Datapath with Efficient Operation
Structure for Motion Estimation

Yuki FUKAZAWA†, Keita WATANABE†, Yuki MINOURA†, Toshio KONDO† and Takahiro SASAKI†

† Graduate School of Engeneering, Mie University
1577, Kurimamachiya-cho, Tsu-City, Mie, 514-8507 Japan

Email: †{fukazawa, minoura, kondo, sasaki}@arch.info.mie-u.ac.jp

Abstract—Even high-performance general purpose proces-
sors are not sufficient for speedy motion estimation (ME),
though they support some SIMD instructions for ME. In this
paper, we propose a SIMD-based general-purpose-oriented
datapath with efficient operation structure for ME. The
several additional components have been added to a comven-
tional datapath base for ME acceleration. The results of its
logic design and chip layout design showed the proposed
datapath accelerates motion estimation speed by 3.99-5.06
times on average in the diamond, SUC and non-dense patterns
compared to previous method with only 2.6% hardware area
increase.

Key words : Motion estimation, SIMD, general purpose
oriented, shuffle operation, no-alignment block access.

I. INTRODUCTION

The high definition of video image has made consid-
erable in recent years as the test broadcast of Ultra High
Definition Television is scheduled for next year in Japan.
Under these circumstances, the demand for the compression
ratio improvement of video encoding is increasing. In
January 2013, the video coding standard H.265/HEVC [1]
being twice as efficient as H.264/HVC [2] was recom-
mended by ITU-T for satisfying the high coding efficiency.
However, its encoding speed becomes at least several
times slower than H.264 by the increase in computation
complexity. Improving the motion estimation (ME) is the
most important key point to accelerate the encoding speed
because ME occupies most of the encoding processing.
Although conventional processors such as ARM and x86
processors have enhanced datapaths or instructions for ME
to reduce the processing time. For example, PSADBW
and MPSADBW instructions utilized for motion estimation
have been implemented in x86 processors [3], [4]. However
these instructions are less compatible to efficient search
patterns, e.g., the expanding diamond pattern [5] that is
utilized in H.265 reference software. Though conventional
multi-purpose processors with ME accelerating capability
has been proposed [6], none of these processors provide
satisfactory for recent efficient ME algorithms.

In order to improve this condition, we can design two
types of datapaths, one is oriented toward a special-purpose
processor for more efficient ME processing, and the other
is oriented a general purpose processor with ME accel-
eration capability. In this paper, we proposed a general-
purpose-oriented datapath that adds minimum function to
a previous conventional datapath corresponding to SIMD
instructions for ME and evaluate its efficiency. In order
to accelerate ME processing, we introduced various types

of additional function units : a FIFO temporally storing
absolute difference (AD) values, a three-stage-structured
AD adder, a comparison register extracting the minimum
sum of absolute differences (SAD), a short-word-oriented
AD adder, a byte-unit address modifier and a barrel shifter.

In order to compare the ME performance of the pro-
posed datapath, we evaluate the number of steps required
for SAD operation in diamond pattern, SUC pattern and
non-dense pattern consisting of scattered search points.
In addition, we implemented the proposed datapath and
calculated its hardware scale by logic synthesis.

II. INEFFICIENCY OF CURRENT SIMD INSTRUCTIONS
FOR ME

Acceleration of the ME processing is a keypoint to
obtain high quality of video compression. The current
processors such as ARM and x86 architecture support the
SIMD instructions for efficient ME operations in recent
years. However, these processors cannot always perform
efficient ME due to the limitation of the specification
instruction. In this section, we introduce about ME and
function limitation of a current considerable SIMD instruc-
tion for ME.

A. Motion Estimation
ME is the process to determine motion vectors that

utilize to reduce the redundant data in a video image. In
this process, block matching process between a reference
block and a template block is repeated to determine the
motion vector. Here, the reference block is a block in a
search area in a reference picture and the template block
is a coding block in a current picture. As a result, the
best reference block with the highest similarity compared
with the template block is detected. Most of ME process
is composed of large amount of SAD operations that
calculates the similarity between blocks in two pictures.

1

2

4

0 12

4

1

2

4

1

2

4

2

4

2

42

4

4

2

1

0 11

1

1

1

11

(b) Diamond pattern(a) Square pattern
Fig. 1. Search pattern

1031978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

PC

In
s
tr

u
c
ti
o

n
 M

e
m

o
ry

FIFO Reg.

Scalar
Reg.

rrb Decorder

Min. SAD Unit

S.W. SAD Unit

Address Dec.

A
L

UM
U

X

M
U

X

Vector
Reg.

M
U

X

V
e

c
to

r
A

L
U

M
U

X

M
U

X

M
U

X

Shuffle Unit

AD Adder
stage 1

P
ip

e
lin

e
 R

e
g

.

P
ip

e
lin

e
 R

e
g

.

P
ip

e
lin

e
 R

e
g

.

P
ip

e
lin

e
 R

e
g

.

P
ip

e
lin

e
 R

e
g

.

P
ip

e
lin

e
 R

e
g

.

AD Adder
stage 2

AD Adder
stage 3

Address
modification

unit

Cache
Memory

Fig. 2. Architecture of the proposed datapath

ME algorithms are divided into two classes, i.e.,
hardware-oriented and software-oriented. The former is
mainly based on hierarchical raster search for dense square
area. The raster search repeats the block matching in
raster order in the search area to detect a block with the
minimum SAD value. It can provide easy implementation
on parallel processing, though it reaches high computational
complexity. On the other hand, the latter reduces computa-
tional complexity by utilizing tracking search. There are
some well-known tracking search patterns, such as UM
hexagon pattern [7], EPZS [8]. Figure 1 shows two unit
search patterns, a square pattern and a diamond pattern, for
tracking search [5], [9], [10]. Tracking search turns the unit
search pattern, i.e., the unit center to the minimum SAD
value point in the previous unit search until the SAD value
of the search center corresponds to the minimum value in
the search area. The advantage of the tracking search can
increase the chance to find the best prediction block and
considerably reduce the computational complexity.

B. Current SIMD Instructions for ME
Nowadays, many general purpose processors supports

SIMD instruction set containing several instructions for
ME. For example, ARM processor has a 128-bit wide
vector register and a SAD operation module for SIMD in-
struction set and it provides VABA instruction accumulating
AD results for SAD operation [11].

X86 processor provides the SIMD extention instructions
called MMX, SSE and AVX (Advanced Vector Extensions)
[3], [4]. These contains the PASADBW and the MP-
SADBW instruction for ME acceleration. The former per-
forms SAD operation between a current and a reference unit
picture consisting of 16 successive pixels in the horizontal
direction. The latter performs SAD operation between a
current unit picture and eight reference unit pictures at
the successive search points. In this latter case, each unit
picture consists of 4 sucessive pixels in the horizontal
direction. These instructions utilize 128-bit wide XMM
registers and 256-bit wide YMM registers, respectively,
so that they make possible to execute parallel matching
between a current and eight reference blocks.

However, this parallel execution is restricted to succes-
sive eight search points in the horizontal directions. Thus,
it provides lower compatibility for software-oriented ME
mainly repeating the diamond or square searches. There-
fore, almost all commercial general-purpose processors
cannot efficiently execute ME.

III. SIMD DATAPATH WITH EFFICIENT OPERATION
STRUCTURE FOR ME

Figure 2 shows the architecture of the proposed SIMD
based datapath. It performs 8×4 size block matching be-
tween a current coding block and a reference candidate
block in a ±4 small search range efficiently. Note that,
the 8×4 size block is the smallest block composing any
block used in H.265 motion estimation. In this figure, the
components are shown by solid lines are the conventional
equipments and those shown by dotted lines are extensions
in this design. The following are the key features or
functions of our proposed datapath.

The datapath is a 2-way superscalar processor which can
execute a scalar (64-bit) and a SIMD (256-bit) instruction
simultaneously. The datapath consists of 7-stage pipeline
stages in order to employ the cache memory with both
line and tile unit accessibility [12], of which latency is 3
cycles, to improve the data accessibility. The cache memory
can provide efficient access to data having two dimensional
spatial locality though it increases latency by one cycle.

Both of the reference picture and the current picture are
loaded from the cache memory by an 8×4-byte-size unit
tile to the 256-bit-width Vector Register. However, if the
conventional Vector Register were used, the Vector ALU
could not be fed with an 8×4-byte size reference block
at an arbitrary position in the search range due to uniform
address distribution to each 32-byte unit register composing
a Vector Register. Therefore, we introduce a Vector Register
with a byte-unit address modification unit and a shuffle unit
for unskew of skewed block data in the output side so that
Vector ALU can obtain a unalignment block in the vertical
direction from the Vector Register.

To reduce the number of loading data from the vector
register, the datapath has a byte-unit address modification

1032

8 Byte

Reg.

address

Address

modification

unit

(b) Byte-unit address modification(a) No address modification Reg.

address

8 ByteAlignment

8 Byte
4 Byte

Fig. 3. Address modification

Address

modification

unit

Reg.

address

Shuffle

unit
Vector

Reg.

Fig. 4. Shuffle operation

Reg. 0

Reg. 4

Reg. 2

Reg. 7Reg. 6

Reg. 5

Reg. 1

Reg. 3

Reg. 8

Reg. 3

Reg. 7

Reg. 5

Reg. 1Reg. 0

Reg. 8

Reg. 4

Reg. 6

Reg. 2

rrb

decoder

rrb

Register

rrb

decoder

rrb

Register

3
8 Byte

4
 B

y
te

(b)(a)

Fig. 5. Register-rename-base operation

unit. Figure 3 shows the byte-unit register address modifi-
cation function. There is a 8-byte alignment restriction in
the register, so that a datapath can only load the image data
according to the alignment restriction as shown in Figure
3(a). On the other hand, the proposed datapath has a byte-
unit address modification function, so that it can load the
block data from an arbitrary point as shown in Figure 3(b).

However, the address modification function affects the
loaded block data from the register. As a result, the loaded
block data from the vector register has been skewed accord-
ing to a register address as shown in Figure 3(b). In order
to reorder the skewed block data, the datapath has a shuffle
function. The shuffle unit performs as a barrel shifter, so
that the skewed block data has been transformed into the
expected order as shown in Figure 4.

For the reusability of data, the datapath has an rrb
(register-rename-base) function [13]. It performs register
rotation by using rrb register (Scalar Register 0) with an
rrb Decoder. Figure 5(a) shows the rrb operation when the
rrb register holds the value 3. The rrb decoder decodes
the rrb value and then, the vector register numbers change
according to the rrb value without loading another data
as shown in Figure 5(b). The rrb function can reduce
the number of loading data because no additional cache
memory access is needed.

In the Vector ALU, 32 ADs between two input 32 byte-
wide vectors are calculated simultaneously. In these scalar
and vector pipeline stages, calculations of SADs between

1

2

0 12 1

1

4 42

2

Fig. 6. SUC pattern

(b)(a)

Fig. 7. Scan Order

the 8×4 size blocks and the minimum SAD are executed
in parallel for ME. The sum of these ADs are calculated
in a 3-stage structured AD adder and it is fed to a FIFO
(First-in First-out) register. The sum values in the FIFO
are accumulated to the SAD value according to the block
size by the ALU. The SAD value at each search point is
compared with the value held in the Minimum SAD Unit
(Min. SAD Unit). If it is smaller than the held value, it is
stored in the Minimum SAD Unit as the minimum value
detected so far. On the other hand, the AD values are also
fed into S.W. (Short Word) SAD Unit for the short-word-
oriented SAD calculation.

IV. EVALUATION

In order to compare the performance for ME with that
of proposed SIMD-based datapath, we evaluate the number
of search processing steps of the reference picture for three
types of search pattern. Figure 6 shows a novel search
pattern consisting of 11 search points, which we call Small-
Unsymmetric Cross (SUC) pattern [14]. It is based on the
diamond pattern as shown in Figure 1(b) and focused on
horizontal search. This is because the detected motion is
inclined toward the horizontal direction. Furthermore, it
can reduce the amount of loading the reference picture data
during ME because it reduces the number of vertical search
points. In this evaluation, we employ the small diamond
pattern, the SUC pattern and non-dense pattern that consists
of search points corresponding to reference blocks each of
which has no overlapped area to each other.

The proposed datapath and the conventional datap-
ath executed BB SAD instruction and the MPSADBW
instruction to calculate SAD value, respectively. We set
eleven types of block size that are utilized in H.265
from 8×4 (4×8) until 64×64. The proposed datapath and
conventional one employed snake scan order [15] as shown
in Figure 7(a) and conventional column order as shown
in Figure 7(b), respectively. Snake scan order is able to
achieve high data reusability because it can also reutilize
the data for the next AD operation by the rrb function when
the scan direction is turned at the end side.

Table I shows the total number of steps and average
steps per a pixel for each block size and search pattern.
From this table, we can see that the average number of
steps for ME of the proposed datapath is 3.99, 5.03 and
4.56 times smaller than conventional one for each pattern,
respectively. Especially, the proposed SUC pattern has the
smaller number of vertical search points than the small
diamond pattern As a result, the proposed datapath could
reduce the amount of loading the reference image data,
so that the SUC pattern could improve the performance
for ME compared with other patterns. Furthermore, the
block size becomes larger, the average decrease rate of

1033

TABLE I. TOTAL NUMBER OF STEPS AND AVERAGE STEPS

Total number of steps (Average steps per pixel)
Diamond pattern SUC pattern Non-dense pattern

Previous Proposed Previous Proposed Previous Proposed
8×4 51 (1.594) 22 (0.688) 99 (3.094) 34 (1.063) 27 (0.844) 10 (0.313)
8×8 101 (1.578) 32 (0.500) 197 (3.078) 50 (0.781) 53 (0.828) 15 (0.234)
8×16 201 (1.570) 54 (0.422) 393 (3.070) 84 (0.656) 105 (0.820) 25 (0.195)
16×8 201 (1.570) 53 (0.414) 393 (3.070) 83 (0.648) 105 (0.820) 23 (0.180)
16×16 401 (1.566) 97 (0.379) 785 (3.066) 151 (0.590) 209 (0.816) 45 (0.176)
16×32 801 (1.564) 185 (0.361) 1,569 (3.064) 287 (0,561) 417 (0.814) 85 (0.166)
32×16 801 (1.564) 183 (0.357) 1,569 (3.064) 285 (0.557) 417 (0.814) 81 (0.158)
32×32 1,601 (1.563) 359 (0.351) 3,137 (3.063) 557 (0.540) 833 (0.813) 165 (0.161)
32×64 3,201 (1.563) 711 (0.347) 6,273 (3.063) 1,101 (0.538) 1,665 (0.813) 325 (0.158)
64×32 3,201 (1.563) 707 (0.345) 6,273 (3.063) 1,097 (0.536) 1,665 (0.813) 325 (0.158)
64×64 6,401 (1.563) 1,411 (0.344) 12,545 (3.063) 2,137 (0.522) 3,329 (0.813) 645 (0.157)

TABLE II. HARDWARE SCALE

#NAND gate
rrb Decoder 237

3-Stage structured AD adder 2,167
Shuffle Unit 3,986

FIFO Register 1,944
Min. SAD Unit 873
S.W. SAD Unit 468

Additional Hardware 9,677
Total 365,217

TABLE III. NUMBER OF TRANSFER DATA OF REFERENCE PICTURE
(BYTE)

Proposed Previous
8×4 192 256
8×8 352 384
8×16 544 640
16×8 512 768
16×16 896 1,280
16×32 1,664 2,304
32×16 1,600 2,560
32×32 3,136 4,608
32×64 6,208 8,704
64×32 6,080 9,216
64×64 12,224 17,408

search processing steps of the proposed datapath becomes
smaller. Table III shows the total amount of transfer data
of the reference picture. From this table, we can see that
the amount of transfer data of the proposed datapath is
smaller than conventional one. This is because the proposed
datapath has rrb function. In other words, the proposed
datapath can improve the reusability of data and reduce the
amount of the loading image data from the cache memory.

In order to calculate the area increase of the proposed
datapath, we implemented a chip design in system verilog.
The datapath logic is synthesized by Design Compiler (Syn-
opsys, Inc.) to ROHM 0.18µm process of VDEC (VLSI
Design and Education Center) under the delay constraint
of 6ns. Note that, we implemented the part of FFs such
as tag-memories, valid-memories and data-memories in
the cache memory with ROHM SRAM memory macros.
Table II shows the hardware increase of the proposed
datapath. This table shows the area sizes for each additional
module and whole the datapath, which are converted into
2-input NAND gates. We can see that the area increase of
added 6 modules are only 2.6% of the whole of datapath.
From these implementation results, the total silicon area
is fitted into 2.5mm×2.5mm as shown in Figure 8. Thus,
the proposed datapath achieved considerable performance
improvement in spite of a little area increase compared with
the conventional datapath.

2
.5

 m
m

5.0 mm

Fig. 8. Chip layout

V. CONCLUSION

In this paper, we proposed a SIMD-based Datapath
with efficient operation structure for ME. The proposed
datapath possesses some additional components to perform
ME efficiently, so that it can perform SAD operation of ME
on average 3.99-5.06 faster on average than conventional
datapath for various search patterns. We evaluated the area
size of proposed datapath and showed the area increase is
only 2.6% in comparison with the conventional datapath.
Since the acceleration technologies adopted to the proposed
datapath is easily applicable to another SIMD based datap-
ath, it can contribute to improving video coding capability
for a number of general purpose processors.

ACKNOWLEDGMENT

This work is supported by Grant-in-Aid for Scientific
Research C(2) Grant Number 24500059 and VLSI Design
and Education Center (VDEC), the University of Tokyo in
collaboration with Synopsys, Inc.

REFERENCES
[1] ITU-T Recommendation H.265, “Advanced video coding for generic

audiovisual services,” April 2013.
[2] ITU-R Recommendation H.264, “Advanced video coding for generic

audiovisual services,” May 2003.
[3] Intel, Corp. (April, 2010). Intel Advanced Vector Extentions Pro-

gramming Reference [Online]: http://www.intel.co.jp/
[4] Intel, Corp. (June, 2011). Intel Advanced Vector Extensions Pro-

gramming Reference [Online]: http://www.intel.co.jp/
[5] T. Xiu-Li, D. Sheng-Kui and C. Can-Hui, “An analysis of TZ search

algorithm in JMVC,” IEEE Proc. ICGCS., pp.516–520, June 2010.
[6] S. D. Kim and M. H. Sunwoo, “MESIP: A Configurable and Data

Reusable Motion Estimation Specific Instruction-Set Processor,”
IEEE Trans. on Circuit Systems., pp.1767–1780, Oct. 2013.

[7] Z. Chen, J. Xu, Y. He and J. Zheng, “Fast integer-pel and fractional-
pel motion estimation for H. 264/AVC,” Journal of Visual Commu-
nication and Image Representation 17.2, pp.264–290, April. 2006.

1034

[8] A. M. Tourapis, “Enhanced predictive zonal search for single and
multiple frame motion estimation,” IEEE Proc. VSIP, pp.1069–1079,
Jan. 2002.

[9] O. Ndili and T. Ogunfunmi, “Hardware-oriented modified diamond
search for motion estimation in H.264/AVC,” IEEE Proc. ICIP.,
pp.749–752, Sep. 2010.

[10] Z. Chen, P. Zhou and Y. He, “Fast integer PEL and fractional PEL
motion estimation for JVT,” JVT-F017, pp.5–13, Dec. 2002.

[11] ARM Software development tools RealView Development Suite
Version 4.0 RealView Compilation Tools Assembler Guide [Online]:
http://infocenter.arm.com/help/index.jsp

[12] B. Wang, Y. Fukazawa, T. Kondo and T. Sasaki, “A Cache Mem-
ory with Line and Tile Data Accessibility [In Japanese]”, IEICE
Technical Report (Integrated Circuits and Devices), Vol.114, No.232,
ICD2014-60, pp. 39–44, Oct. 2014.

[13] Intel, Corp. (May, 1999). IA-64 Applicatioon Developers Architec-
ture Guide [Online]: http://www.intel.co.jp/

[14] Y. Minoura, T. Kondo, Y. Fukazawa and T. Sasaki, “Highly Efficient
Motion Estimation Algorithm Frequently Using SIMD Instructions
for Small Search Range [In Japanese]”, IEICE Technical Report
(Image Engineering), Vol.115, No.96, IE2015-38, pp. 35–40, June
2015.

[15] X. Wen, O. C. Au, J. Xu, L. Fang, R. Cha and J. Li, “ An analysis of
TZ search algorithm in JMVC,” IEEE Trans. on Circuit Syst. Video
Technol., Vol.21, No.2, pp.206–219, Feb. 2011.

1035

