
WORK-EFFICIENT PARALLEL NON-MAXIMUM SUPPRESSION
FOR EMBEDDED GPU ARCHITECTURES

David Oro ? Carles Fernández ? Xavier Martorell † ‡ Javier Hernando †

? Herta Security, Barcelona, Spain
† Universitat Politècnica de Catalunya, Barcelona, Spain

‡ Barcelona Supercomputing Center
Email: david.oro@hertasecurity.com

ABSTRACT

With the emergence of GPU computing, deep neural net-
works have become a widely used technique for advancing
research in the field of image and speech processing. In the
context of object and event detection, sliding-window classi-
fiers require to choose the best among all positively discrimi-
nated candidate windows. In this paper, we introduce the first
GPU-based non-maximum suppression (NMS) algorithm for
embedded GPU architectures. The obtained results show that
the proposed parallel algorithm reduces the NMS latency by
a wide margin when compared to CPUs, even clocking the
GPU at 50% of its maximum frequency on an NVIDIA Tegra
K1. In this paper, we show results for object detection in im-
ages. The proposed technique is directly applicable to speech
segmentation tasks such as speaker diarization.

Index Terms— Non-maximum suppression, deep neural
networks, GPU computing, CUDA, object detection

1. INTRODUCTION

Recent advances in GPU computing performance have made
the real-time execution of highly complex signal processing
techniques a reality. Applications including advanced driver-
assistance systems (ADAS), scene understanding, speech seg-
mentation and speaker diarization, among others, leverage
data-parallel GPU architectures. In these environments, em-
bedded computing is playing an increasingly important role
due to the power consumption constraints.

Typically, the most widely used object and event detection
techniques rely on a sliding window approach, which yields
multiple overlapping candidate windows with similarly high
scores around the true location of the object. Non-maximum
suppression (NMS) is the process of selecting a single repre-
sentative candidate within this cluster of detections, so as to
obtain a unique detection per object in the signal.

This work has been supported by the Spanish Ministry of Economy and Competi-
tiveness under contracts TIN2012-34557, TIN2015-65316, PCIN-2013-067, the Gener-
alitat de Catalunya under contracts 2014-SGR-1051, 2014-SGR-1660, and the European
Commission under the Horizon 2020 program (RAPID project H2020-ICT-644312).

Deep neural networks (DNNs) have renewed the interest
in applying fast NMS algorithms for object and event clas-
sification tasks. State-of-the-art DNN frameworks [1] have
quickly emerged as a powerful machine learning tool that
provides improved accuracy [2] albeit at a high computa-
tional training cost while involving huge amounts of data.
Since DNNs are inherently data parallel, they are usually
built and fine-tuned using high-end discrete GPUs. However,
for the evaluation and deployment of such DNN models on
real-world scenarios, embedded platforms featuring mobile
GPUs such as the NVIDIA Tegra are quickly gaining traction.

Modern system-on-chip heterogeneous platforms fea-
ture low-power multicore ARM CPU cores combined with
general-purpose GPUs. These embedded GPUs are quickly
closing the performance gap with high-end discrete GPUs,
and they are now powerful enough for handling massively
parallel CUDA and OpenCL kernels.

In the field of speech segmentation it is also necessary
to select the most appropriate windows localizing acoustic
events in the temporal dimension, as they sample the acoustic
recording timeline with small temporal increments and high
overlapping. Additionally, window selection can also be ap-
plied in the context of feature extraction from 2D spectrogram
images derived from speech tasks. Here, DNNs traditionally
employed in computer vision are being increasingly used to
automatically locate and extract features from spectrogram
[3, 4, 5]. Hence, a GPU-based NMS algorithm would also
benefit applications such as acoustic event detection, speaker
diarization, and speech or speaker recognition.

Even though NMS is a required step for DNN mod-
els implemented as sliding-window classifiers [6, 7], they
are still sequentially executed on CPUs and thus cannot ex-
ploit the vast amount of computing resources available on
general-purpose embedded GPUs. For real-time speech pro-
cessing and computer vision applications analyzing large
amounts of simultaneous objects, a data-parallel GPU kernel
that overcomes the latency constraints imposed by the data
dependences of serial NMS implementations is thus required.

In this paper we present a fast and lightweight parallel ker-

1026978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

nel implementation of NMS that targets the GPUs included
in NVIDIA’s Tegra K1 and X1 platforms. To the best of our
knowledge, this is the first NMS implementation that fully ex-
ploit such GPU architectures, and it could be easily mapped
to any multithreaded stream processor with minimal efforts.

2. NON-MAXIMUM SUPPRESSION

In the context of object detection, DNNs implemented as
sliding-window classifiers require fusing multiple overlap-
ping detections. As Figure 1 depicts, this fusion is an im-
portant step of such DNN-based object classification frame-
works. Usually, the output of each detected window is a score
derived from the last layer of the DNN. More particularly,
this score represents a measure of the likelihood that the
region enclosed by the window contains the object through
which the DNN classifier has been trained. The score is thus
degraded as the location and scale of the sliding window
containing the object varies. As a result, the maximum score
is obtained at the precise location and window dimensions,
corresponding to the local maximum of the response function
used by the DNN.

The goal of NMS is to extract a good, single represen-
tative from each set of clustered candidate object detections.
Therefore, NMS resembles a classic clustering problem, and
typically relies on two basic operations: (i) identifying the
cluster to which each detection belongs, and (ii) finding a rep-
resentative for each cluster.

Assuming rectangular bounding boxes, the positive out-
put of a given binary DNN sliding-window classifier yields
a tuple {x, y, w, h, s}, namely 2D coordinates (x, y), window
width and heightw×h, and a score s for a detection d ∈ D, in
which D is the set containing all detected objects. This NMS
approach is usually implemented as a greedy iterative pro-
cess, and involves defining a measure of similarity between
windows while setting a threshold θ for window suppression.

Recent works [7, 8, 9] commonly rely on the abovemen-
tioned greedy NMS technique. These post-processing meth-
ods essentialy find the window with the maximum score, and
then reject the remaining candidate windows if they have an
intersection over union (IoU) larger than a learned thresh-
old. However, no NMS latency benchmarks were disclosed
in those works, and also parallelization remains unaddressed.

Another common NMS approach is to employ optimized
versions of clustering algorithms, particularly k-means [10] or
mean shift [11]. Unfortunately, k-means requires a predeter-
mined number of clusters, which is unknown and difficult to
estimate beforehand; and additionally only identifies convex
clusters, so it cannot handle very non-linear data. On the other
hand, mean shift is computationally intensive and often strug-
gles with data outliers. Combining both methods may solve
many of these problems in practice, but their iterative nature
makes them difficult to parallelize and highly uncompetitive
from a latency perspective.

Fig. 1. Visualization of the NMS process for a DNN-based
face classifier. Pre-NMS (light boxes). Post-NMS (bold box).

A novel NMS proposal [12] based on the affinity propaga-
tion clustering algorithm overcomes the shortcomings derived
from hard-coded thresholds of greedy NMS methods. How-
ever, this proposal is unworkable for real-time applications as
the authors report a latency of 1000 ms to cluster 250 candi-
date windows.

3. PARALLEL IMPLEMENTATION

In order to exploit the underlying architecture of general-
purpose embedded GPUs, an NMS kernel must expose a
parallelization pattern in which each computing thread in-
dependently evaluates the overlapping between two given
bounding boxes. The idea is to avoid at the maximum ex-
tent data dependences that serialize computations, and thus
overcome the limitations in scalability derived from the tradi-
tionally iterative clustering process. Our proposal addresses
this issue by adopting a map/reduce parallelization pattern
which uses a boolean matrix both to encode candidate object
detections and to compute their cluster representatives.

Figure 2 depicts a toy example of the proposed algorithm,
in which an image frame contains three objects, three win-
dow clusters and nine detections. Our matrix encodes the re-
lationship among all detections, initially assuming that all are
possible cluster representatives (matrix of ones). Firstly, we
decide that two windows di and dj belong to the same cluster
if their areas are overlapped beyond a given threshold; other-
wise, a zero will be placed in the matrix coordinates (di, dj)
and (dj , di). Secondly, we evaluate the non-zero values of
each row, and again place zeroes if the row-indexed detection
(di) is strictly smaller than the column-indexed one (dj), thus
discarding di as the cluster representative (grayed out in Fig-
ure 2). Finally, a horizontal AND reduction will preserve a
single representative per cluster, thus completing the NMS.

Formalizing this process, let D be the set of detection
windows and C the set of clusters for a given frame, with

1027

d1

d8

d7 d5

d2
d4

d3

d9

d6

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

(a) (b) (d)(c)

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

Fig. 2. Visualization of our GPU-NMS proposal: (a) exam-
ple candidates generated by a detector (3 objects, 9 detec-
tions); boolean matrix after (b) clustering and (c) cancellation
of non-representatives; and (d) result after AND reduction.

C ⊆ D. We build a boolean matrix B of size Dmax×Dmax,
being Dmax an upper limit of the number of windows pos-
sibly generated by the detector at any frame. Let A(·) be an
operator that returns the area of a window. Given an over-
lapping threshold θ ∈ [0, 1], two candidate windows di and
dj are assigned to the same cluster if A(di ∩ dj)/A(di) ≥ θ.
Candidates within a cluster are discarded as representatives if
A(di) < A(dj). The clipping process is performed in parallel
independently for each detection d ∈ D by a given comput-
ing thread. Since there are no data dependences among detec-
tions, this mapping strategy scales properly as the amount of
GPU cores is increased.

The only required parameters for this algorithm are the
overlapping threshold θ and the maximum number of possi-
ble candidates that can be generated by the detector Dmax.
Although this last constraint may initially seem to be an im-
portant drawback, in general conservative values for Dmax

turn to be very relaxed constraints. As an example, it is com-
mon that face detection models have a minimum face resolu-
tion of 24×24 pixels. In that case, the worst case scenario for
a HD frame of 1920×1080 pixels would be a tiling of 80×45
faces of that size, yielding a matrix B of 36002 elements.

Internally, the map kernel (see Algorithm 1) must first
compute the area a to effectively perform the overlapping test
for each pair of detections di, dj ∈ D. With the aim of pre-
serving simplicity, we assume equal width and height for the
bounding boxes. Therefore, each detection is redefined as a
{x, y, z, s} tuple, in which z = w = h.

Once the boolean matrix B has been computed, it is re-
quired to call a reduce kernel (see Algorithm 2) for selecting
the optimal candidate from each row as it is depicted in Fig-
ure 2. This task is perfomed using AND operations in paral-
lel for each row of B and can be implemented in a CUDA
kernel by means of syncthreads and(cond). This di-
rective returns 1 only if the cond predicate evaluates to true
for all threads of the CUDA block, and is directly translated
to the hardware-accelerated BAR.RED.AND assembly instruc-
tion. Therefore, it is possible to split the AND reductions
of B by creating Dmax/k partitions and then assigning each
partition to a given thread block. Under this parallelization

Algorithm 1: MAPKERNEL

Data: Matrix B and vector D
begin

i← blockIdx.x * blockDim.x + threadIdx.x

j ← blockIdx.y * blockDim.y + threadIdx.y

if D[i].s < D[j].s then
a← (D[j].z + 1) ∗ (D[j].z + 1)

w ← max(0,min(D[i].x+D[i].z), D[j].x+D[j].z)

−max(D[i].x,D[j].x) + 1)

h← max(0,min(D[i].y +D[i].z), D[j].y +D[j].z)

−max(D[i].y,D[j].y) + 1)

B[i ∗Dmax + j]← (w∗h
a

< θ) ∧D[j].z 6= 0

end
end

Algorithm 2: REDUCEKERNEL

Data: Matrix D, value k, and vector V of size Dmax

begin
i← blockIdx.x

j ← i ∗Dmax+ threadIdx.x

n← Dmax/k

V [i]← syncthreads and(B[j])

for 1 to k − 1 do
j ← j + n
V [i]← syncthreads and(V [i] && B[j])

end
end

pattern, each thread is synchronized, and simultaneously re-
duces the boolean values stored in the partition. Parameter
k is experimentally determined so that the GPU achieves the
highest occupancy. Since we are dealing with a square matrix,
it is required to call k times the reduction directive within the
kernel assuming a CUDA block of size Dmax/k and a grid
size equal to the size of the input set detections D. A vec-
tor V of size Dmax is required for temporarily storing partial
reductions of CUDA blocks.

4. EXPERIMENTAL RESULTS

In order to evaluate the latency of the proposed GPU-based
NMS method, we conducted several experiments under dif-
ferent scenarios. The selected input consisted of a video from
the SVT HD multi-format test set1 featuring approximately 60
simultaneous faces per frame (named crowd run), and the
83rd Academy Awards Nominees2 image with 147 faces. As
a result of this, the output of a DNN-based face classifier was
used as the input of the proposed NMS algorithm. The tested

1ftp://vqeg.its.bldrdoc.gov/HDTV/
2http://tinyurl.com/o5n97ra/

1028

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

Frequency (MHz)

CPU-LP
CPU-G
GPU

N
M

S
La

te
nc

y
(m

s)

Fig. 3. NMS latency on GPU, CPU-LP and CPU-G cores for
the selected input image.

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140
Faces

N
M

S
La

te
nc

y
(m

s)

Fig. 4. NMS latency on GPU for the input image (k=4).

platform was a Jetson TK1 board equipped with a Tegra K1
chip, and flashed with the JetPack TK1 v1.2 image.

Since the Tegra K1 chip features 4 CPU cores plus a fifth
low-power companion core, we compared the latency of the
GPU-based NMS against a high-performing core (CPU-G)
and the low-power core (CPU-LP) running OpenCV’s O(n2)
NMS as in [13]. Due to the employed DVFS hardware tech-
niques, the frequency of the GPU varies between 72 MHz and
850 MHz, whereas the CPU-LP core ranges 51 MHz - 1 GHz,
and a given CPU-G core 204 MHz - 2.3 GHz. Figure 3 shows
that a GPU clocked at 50% of its maximum frequency outper-
forms both CPU types also when they are operating at 50% of
its maximum frequency. It should be noted that for battery-
powered fanless solutions the chip must be underclocked.

In general, the GPU-based NMS algorithm also scales
properly as the number of simultaneous faces and detections
increase. Figure 4 shows that the latency spikes at 49 and 99
simultaneous faces (1024 and 2048 detections), respectively.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

Video Frame

D
et

ec
tio

ns

N
M

S
La

te
nc

y
(m

s)

NMS Latency (ms)
Detections

__

Fig. 5. NMS latency on GPU for the input video (k=4).

4 8 16 32 64 128 256
1

2

3

4

5

6

7

8

9

10

11

Re
du

ct
io

n
 K

er
ne

l
La

te
nc

y
(m

s)

k

Fig. 6. Reduction kernel latency depending on k value.

These results are in line with Algorithm 2, since k=4 yields
a 1024-thread block. Analogously, Figure 5 shows a quasi-
constant GPU latency due to fact that the amount of simulta-
neous detections of a given frame is less than 1024.

In line with the obtained results, it is thus possible to ex-
plore multiple thread block partitions for the reduction kernel
by varying the k value. Figure 6 shows that the lowest latency
for the reduction kernel is achieved when k = 32 using the
same input image featuring 147 faces (corresponding to 2997
detections).

5. CONCLUSIONS

In this paper, we have presented efficient NMS kernels for
embedded GPUs based on the Tegra K1 chip. The obtained
results show that the GPU generally beats CPU cores even
clocking the GPU at a 50% of its maximum frequency. In
future works, we plan to profile the proposed kernels on chips
with higher GPU core counts such as Tegra X1.

1029

6. REFERENCES

[1] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell, “Caffe: Convolutional ar-
chitecture for fast feature embedding,” in Proceedings
of the ACM International Conference on Multimedia.
ACM, 2014, pp. 675–678.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information
Processing Systems, 2012, pp. 1097–1105.

[3] Tara N. Sainath, Abdel-rahman Mohamed, Brian Kings-
bury, and Bhuvana Ramabhadran, “Deep convolutional
neural networks for LVCSR,” in Proceedings of the
IEEE International Conference on Acoustics, Speech
and Signal Processing, 2013, pp. 8614–8618.

[4] Ossama Abdel-Hamid, Li Deng, and Dong Yu, “Ex-
ploring convolutional neural network structures and op-
timization techniques for speech recognition,” in Pro-
ceedings of the 14th Annual Conference of the Inter-
national Speech Communication Association, 2013, pp.
3366–3370.

[5] Tara N Sainath, Brian Kingsbury, George Saon, Ha-
gen Soltau, Abdel-rahman Mohamed, George Dahl, and
Bhuvana Ramabhadran, “Deep convolutional neural
networks for large-scale speech tasks,” Neural Net-
works, vol. 64, pp. 39–48, 2015.

[6] Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke,
Abhijit Ogale, and Dave Ferguson, “Real-time pedes-
trian detection with deep network cascades,” in Pro-
ceedings of the British Machine Vision Conference,
2015.

[7] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt,
and Gang Hua, “A convolutional neural network cas-
cade for face detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2015, pp. 5325–5334.

[8] Sachin Sudhakar Farfade, Mohammad Saberian, and
Li-Jia Li, “Multi-view face detection using deep
convolutional neural networks,” in arXiv preprint
arXiv:1502.02766, 2015.

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jagan-
nath Malik, “Rich feature hierarchies for accurate object
detection and semantic segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2014, pp. 580–587.

[10] S.A. Arul Shalom, Manoranjan Dash, and Minh Tue,
“Efficient k-means clustering using accelerated graph-
ics processors,” in Data Warehousing and Knowledge
Discovery, pp. 166–175. Springer, 2008.

[11] Peihua Li and Lijuan Xiao, “Mean shift parallel tracking
on GPU,” in Pattern Recognition and Image Analysis,
pp. 120–127. Springer, 2009.

[12] Rasmus Rothe, Matthieu Guillaumin, and Luc
Van Gool, “Non-maximum suppression for object
detection by passing messages between windows,” in
Computer Vision – ACCV 2014, vol. 9003 of Lecture
Notes in Computer Science, pp. 290–306. Springer,
2015.

[13] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske,
Will Song, Joel Pazhayampallil, Mykhaylo Andriluka,
Royce Cheng-Yue, Fernando Mujica, Adam Coates,
and Andrew Y. Ng, “An empirical evaluation of
deep learning on highway driving,” arXiv preprint
arXiv:1504.01716, 2015.

1030

