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ABSTRACT 

 
Runtime-reconfigurable, mixed-radix FFT/IFFT engines are 
essential for modern wireless communication systems.  To comply 
with varying standards requirements, these engines are customized 
for each modem. The Chisel hardware construction language has 
been used in this work to create a generator of runtime-
reconfigurable 2n3m5k FFT engines targeting software-defined 
radios (SDR) for modern communications, but with flexibility to 
support a wide range of applications. The generator uses a conflict-
free, in-place, multi-bank SRAM design, and exploits the duality 
of decimation-in-frequency (DIF) and decimation-in-time (DIT) 
FFTs to support continuous data flow with only 2N memory 
blocks. DFT decomposition using the prime-factor algorithm 
(PFA) followed by the Cooley-Tukey algorithm (CTA) reduces 
twiddle ROM sizes. A programmable Winograd’s Fourier 
Transform (WFTA) butterfly supporting radix-2/3/4/5/7 operations 
reuses radix-7 hardware to support reconfigurability with minimal 
area penalty. The generated FFTs use 50% less memory than 
iterative FFTs from Spiral. The twiddle ROM size of the generated 
LTE/WiFi FFT engine is 16% smaller than that of a 2048-pt Spiral 
design.   
 

Index Terms— Fast Fourier Transform, Cooley-Tukey, 
Winograd’s Fourier Transform, Prime Factor Algorithm, 
Reconfigurable Hardware Generator. 
 

1. INTRODUCTION 
 
OFDM-based wireless transceivers need reconfigurable IFFT/FFT 
engines to support a multitude of channel bandwidths and 
modulation schemes. The need for adaptation to a wide range of 
channel bandwidths requires support for many different FFT sizes, 
which are often not decomposable to 2n, making reuse of these 
blocks difficult.  For example, in order for an SDR to support both 
WiFi and LTE with single-carrier frequency-division multiple 
access (SC-FDMA), the maximum powers of (2, 3, 5) that must be 
supported are (2048, 243, 25) [1]. The need for a plethora of FFT 
engines has been addressed by building commercial 
reconfigurable, application-specific FFT cores.  However, they are 
generally not resource efficient, which is problematic when users 
only need a subset of FFT sizes and are otherwise severely 
hardware constrained. Additionally, they cannot be easily modified 
to support new standards. The terrestrial DTV system in China, for 
example, requires a 3780-pt FFT and a radix-7 butterfly [2],[21]. A 
step forward is the development of FFT generators; however, all 
generators available in the open literature are of fixed size and not 
applicable to SDR.  
 

 

FFT generators such as Spiral exploit design regularity, 
enabling usage in diverse applications with ideally no design 
overhead [3],[20]. Highly parameterizable generators also enable 
rapid and extensive design exploration, allowing throughput/area 
tradeoffs [17], memory access methods, fixed point optimizations 
(as in [4]), etc. to be studied in detail. However, no generator in 
open literature supports all these requirements. Thus, we have 
designed a generator of memory-based, runtime-reconfigurable 
2n3m5k FFT engines. The design is hardware-optimized: it relies on 
butterfly reuse, supports continuous data flow with 2N memory 
blocks, and stores fewer twiddle factors than designs from state-of-
the-art generators like Spiral. 
 

2. DESIGN METHODOLOGY  
 
2.1. Memory-Based Architecture 
 
Hardware FFT designs often use either in-place memory-based or 
pipelined architectures. For large FFT sizes, memory-based 
designs are smaller in area—usually relying on a single iterating 
butterfly—but support lower throughput [2]. Pipelined designs use 
more processing elements to improve throughput and more easily 
support continuous data flow [16], but often overprovision 
butterflies (i.e. log2N radix-2 butterflies for 2n-pt FFTs) to achieve 
this.  
 

Memory-based designs with conflict-free scheduling schemes 
ease area/throughput tradeoffs  and can  compute  an  N-pt  FFT  in  

𝐶 = 𝑆𝑃 + ⌈ !
!!!

!!!
!!! ⌉   (1) 

clock cycles, where B is the # of parallel butterflies, ri is the radix 
at the ith calculation stage, S is the # of stages, and P represents 
the pipelining between memory accesses (butterfly pipelines + 
sequential memory read delay). The first term shows that all i-1 
operations must finish before stage i calculations begin. As the 
pipeline is flushed out, calculations must be stalled. Eqn. (1) shows 
that only two radix-2/4 butterflies are needed to complete a 2048-
pt FFT in <2048 cycles.  Memory-based architectures require more 
complex control logic, but adapt more easily to reconfigurable, 
non-2n flavors.   
 
2.2. Cooley-Tukey & Prime-Factor Algorithms 
 
The widely-used Cooley-Tukey algorithm (CTA) computes 2n-pt 
FFTs with a complexity of O(NlogN) [2],[14]: 

𝑋 𝑘!, 𝑘! = 𝑊!
!!!! 𝑥 𝑛!,𝑛! 𝑊!!

!!!!
!! 𝑊!!

!!!!
!!      (2) 

As shown in [15], The DIF FFT is constructed with ordered inputs, 
digit-reversed outputs, and twiddle multiplication (𝑊!

!!!!) at the 
butterfly output. The opposite is true for a DIT FFT.  
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Fig. 1. Memory access timing with 2N memory (DIF↔DIT every 
2ath symbol) 

 
The CTA can be used for coprime DFT decompositions, but 

the prime-factor algorithm (PFA) achieves better efficiency by 
eliminating twiddle multiplications [5],[19]:  

𝑋 𝑘!, 𝑘! = 𝑥 𝑛!,𝑛! 𝑊!!
!!!!

!! 𝑊!!
!!!!

!!   (3) 
In [2], Hsiao et al. propose the following input/output index-
mapping scheme, which we adopt in our design:  

𝑛 = 𝑁!𝑛! + 𝐴!𝑛! mod𝑁, 𝐴! = 𝑝!𝑁! = 𝑞!𝑁! + 1 (4) 
𝑘 = 𝐵!𝑘! + 𝑁!𝑘! mod𝑁,      𝐵! = 𝑝!𝑁! = 𝑞!𝑁! + 1 (5) 

When N1 and N2 are coprime, (4-5) simplify to one of several 
possible PFA mappings. Otherwise, using 𝐴!,𝐵! = 1, the 
equations reduce to the CTA mapping. Ordering the factorization 
of N so that the PFA decomposition occurs before the CTA 
minimizes twiddle multiplications [5]. This allows the twiddle 
ROMs to be partitioned by coprimes to ease reconfigurability, and 
reduces the necessary ROM size. Without further optimizations, 
the # of twiddle factors stored for radix-2/3/4/5 support is: 

𝑇 = 3×2!,!"#!! + 2×3!,!"#!! + 4×5!,!"#!! (6) 
Only 1718 twiddle factors are needed for all WiFi/LTE FFTs, so 
the twiddle ROM can be 16% smaller than that of a 2048-pt Spiral 
design [3].  
 
2.3. DIF ↔ DIT Duality for Memory Reduction 
 
Typically, calculations can be done in-place, but I/O cannot 
because input/output mappings are digit-reversed. A naïve ping-
pong memory-based FFT architecture thus requires at least 3N 
memory entries to support continuous data flow. The duality of the 
DIF/DIT decompositions (and extensions to the PFA) enables 2N 
memory usage [6]. As shown in Fig. 1, reversing the 
decomposition order every 2ath symbol allows x2a+2[n],x2a+3[n] to 
be written to memory as X2a[k],X2a+1[k] is read out, in order, with 
n=k. The generated design uses 50% less BRAM (in an FPGA) 
than a Spiral equivalent. 
 

To extend this duality to the PFA [2], first assume N is 
decomposed in the order N1,N2,N3. Then, from (4-5), 
𝑛 = 𝑁!𝑁!𝑛! + 𝐴!𝑛! mod𝑁, ñ! = 𝑁!𝑛! + 𝐴!𝑛! mod𝑁!𝑁!  (7) 
𝑘 = 𝐵!𝑘! + 𝑁!𝑘! mod𝑁, 𝑘! = 𝐵!𝑘! + 𝑁!𝑘! mod𝑁!𝑁!   (8) 

When N1,N2,N3 are coprime (GCD=1), 
𝐴! = 𝑝!𝑁! = 𝑄!𝑁!𝑁! + 1, 𝑄! = 𝑞!     (9) 
𝐴! = 𝑝!𝑁! = 𝑄!𝑁! + 1, 𝑄! = 𝑞!𝑁!  (10) 
𝐵! = 𝑝!𝑁! = 𝑄!𝑁! + 1, 𝑄! = 𝑞!𝑁!   (11) 

Qx is calculated via the Scala implementation of the extended 
Euclidean algorithm gcd 𝑎, 𝑏 = 𝑎𝑥 + 𝑏𝑦.  
Substitution of (9-11) into (7-8) results in the mappings [2]: 
𝑛 = 𝑁!𝑁!𝑛! + 𝑝!𝑁!𝑁!𝑛! + 𝑝!𝑁!𝑝!𝑁!𝑛! mod𝑁  (12) 
𝑘 = 𝑝!𝑝!𝑁!𝑁!𝑘! + 𝑁!𝑝!𝑁!𝑘! + 𝑁!𝑁!𝑘! mod𝑁   (13) 

A similar decomposition in the reversed order N3,N2,N1 results in:  
𝑛 = 𝑁!𝑁!𝑛! + 𝑝!𝑁!𝑁!𝑛! + 𝑝!𝑝!𝑁!𝑁!𝑛! mod𝑁   (14) 
𝑘 = 𝑝!𝑝!𝑁!𝑁!𝑘! + 𝑝!𝑁!𝑁!𝑘! + 𝑁!𝑁!𝑘! mod𝑁  (15) 

As in the CTA case, to achieve in-place I/O with 2N memory,  
𝑘!, 𝑘!, 𝑘! !! → 𝑛!,𝑛!,𝑛! !!!!   (16) 

 
Fig. 2. N=24 SFGs: 4, 2, 3 (left) and 3, 2, 4 (right) decompositions 

 
The signal-flow graph (SFG) in Fig. 2 illustrates the duality of the 
forward/reverse combined PFA+CTA decompositions used.    
 

3. FFT HARDWARE GENERATOR 
 
3.1. Translating Constraints into Reusable Hardware 
 
The Chisel hardware construction language was chosen to build the 
generator over traditional HDLs due to its improved 
parameterization capabilities, modern programming language 
features, and more compact code [7]. The generator has two 
components. Given a set of user constraints (i.e. desired FFT 
sizes), the “firmware part” uses Scala to calculate parameters and 
create lists of constants (twiddles, coprimes, etc.) for look-up table 
(LUT) generation. The LUT construction can be performed in 2 
lines of Scala code, without requiring the user to switch to some 
intermediate representation. The “hardware component” is an FFT 
template containing blocks that control data flow between I/O, 
memories, and the butterfly unit, as in Fig. 3. The FFT template 
uses the calculated parameters to specify memory sizes and 
distribution, calculation + I/O rates, amount of butterfly pipelining, 
signal bit widths, and a butterfly to support all needed radices. 
Parameters can be updated without rewriting code, and 
synthesizable Verilog is generated directly by Chisel. Chisel also 
simplifies DSP validation via two simulation modes: 1) floating-
point for accurate verification and 2) fixed-point to evaluate 
realistic hardware metrics.  
 
3.2. I/O Control Logic 
 
The index vector generator from [2] has been extended for this 
design. For decomposition of coprime N1,N2,N3, the counters 
(𝑛!! ,𝑛!! ,𝑛!! )  and stored 𝑄!! = 𝑁! − 𝑄! mod𝑁! values are used to 
generate indices: 

𝑛! = 𝑛!! + 𝑄!!𝑛! mod𝑁!,          𝑛! = 𝑛!! + 𝑄!!𝑛! mod𝑁!       (17) 
The counter sequence is implemented in the following pseudocode:  

𝑛! = 𝑛!! ≔ {𝑛!! + 1  𝑖𝑓  𝑛!! ≠ 𝑁! − 1; 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 
𝑛!!!! ≔ {𝑛!! + 1  𝑖𝑓  𝑛!! ≠ 𝑁! − 1; 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} on 𝑛!!!! → 0 
The counter 𝑛! increments and wraps when 𝑛!! = 𝑁! − 1  &  𝑛!! =
𝑁! − 1 (WC). Thus, the coprime index vector generator performs: 

𝑅! ≔ {0  𝑖𝑓  𝑊𝐶; 𝑒𝑙𝑠𝑒   𝑅! + 𝑄!! mod𝑁!} 
𝑅! ≔ {0  𝑖𝑓  𝑛!! = 𝑁! − 1; 𝑒𝑙𝑠𝑒   𝑅! + 𝑄!! mod𝑁!} 
𝑛! = 𝑛!! + 𝑅! mod𝑁!, 𝑛! = 𝑛!! + 𝑅! mod𝑁! 

Because 𝑅! ,𝑄!! ,𝑛!! ∈ [0,𝑁!), the sums are < 2𝑁! − 1, so a simple 
subtractor and two-input MUX can compute the modulus, as in [5]. 
One coprime index vector generator can be used for both DIF/ DIT 
with N1,N2,N3 reversal, but Qx’s must be found separately.  

Symbol 0 Symbol 1 Symbol 2 Symbol 3 Symbol 4 

Mem B Mem A 

Symbol 0 Symbol 1 

Mem A Mem B 

Mem A Mem B 

In-Order 
Time Data 

Input/Output 

Calculations Mem A Mem B 

Mem A 

Symbol 2 
In-Order 

Freq. Data 
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Fig. 3. Generator block diagram consisting of 1) a “firmware part” for parameterization (left) and 2) a hardware FFT template (right) 

 
To support coprime factorization and then CTA, the vector 

𝑛!,! ,𝑛!,!!!,… ,𝑛!,!,𝑛!,! ,… ,𝑛!,!,𝑛!,! ,… ,𝑛!,!  can be obtained by 
using the 𝑛!,𝑛!,𝑛!  values to address corresponding decimal-to-
base-r LUTs. However, we have chosen instead to store the 𝑄!! s in 
base-r notation and implement base-r adders. The coprime modulus 
operations are obtained “for free” by simply masking out the 
appropriate base-r digits, and the final index vector is directly 
obtained without additional LUTs. As an example, if N3 is 5k, 𝑛! is 
decomposed into the base-5 digits (𝑛!,! ,𝑛!,!!!,… ,𝑛!,!). For an 
N1',N2',N3'=N3,N2,N1 decomposition, 𝑛! uses base-5 and the index 
vector is reversed for memory address/bank generation: 
(𝑛!,!,… ,𝑛!,! ,𝑛!,!,… ,𝑛!,! ,𝑛!,!,… ,𝑛!,!). The individual coprimes 
are vectorized in digit-reversed order.  
 
3.3. Calculation + Memory Access Control  
 
The DIF FFT uses S radix stages. Fig. 1 shows that the number of 
radix-𝑟! butterflies at stage i is 𝑁/𝑟!.  For 𝑖 > 0, butterflies occur in 

𝑟!!!!
!!!  groups of 𝑟!!!!

!!!!!  ordered operations. For the DIT-
equivalent FFT, the DIF stages are traversed in reverse. A set of 𝑛! 
counters is used to index operands and track the butterfly iterations 
per stage: 

𝑛!!! ≔ {𝑛!!! + 1  𝑖𝑓  𝑛!!! ≠ 𝑟!!! − 1  &  𝑖 ≠ 𝑆 − 1;   𝑒𝑙𝑠𝑒  0} 
𝑛!!!!! ≔ {𝑛! + 1  𝑖𝑓  𝑛! ≠ 𝑟! − 1, 𝑖 ≠ 𝑥;   𝑒𝑙𝑠𝑒  0} on 𝑛!!! → 0 
Because 𝑟! ≤ 𝑟!"#, each butterfly operand indexed by 𝑗 < 𝑟! is 
guaranteed to come from a different bank 𝑏! [2], given by:  

𝑏! = 𝑛!!!!
!!! mod𝑟!"#    (18) 

𝑏!!!!!! = (𝑏! + 𝑗)mod𝑟!"#   (19) 
Mod operations are more complex than the XOR logic in [8], but 
they simply extend XOR (add mod 2) to more general base-r’s, 
which is useful in mixed-radix designs. Because the N data are 
split amongst 𝑟!"# banks, data in each bank are mapped to 
[0,𝑁/𝑟!"#). A possible addressing scheme if 𝑟! = 𝑟!"# (where 𝑎! 
is the address of the jth butterfly operand) is: 

𝐴!!! = 1, 𝐴!!!!! = 𝐴!!!×𝑟!!!   (20) 
𝑎! = 𝐴!!!!

!!! 𝑛!    (21) 
𝑎!!! = 𝑎!!! + 𝐴!    (22) 

With pipelined butterflies, calculations are temporarily stalled and 
memory writes are disabled, so stages can compute on fresh data.  
 

3.4. Twiddle Address Generation  
 
For an N-pt DIF FFT, the non-trivial ith stage twiddles 𝑊!

!!!" , 𝑗 ∈
[1, 𝑟!) repeated in each butterfly group are addressed by: 

𝑛!",!!! =    [0,𝑁/𝑟!)   (23) 
𝑛!",!!! = ( 𝑟!!!!

!!! )  ×  [0,𝑁/( 𝑟!!
!!! ) − 1]  (24) 

As shown in [15], the first CTA DIF stage requires the most 
twiddle factors. Because the DFT is decomposed into smaller sizes, 
each subsequent stage uses fewer unique twiddles, and the last 
stage requires none. The twiddle index is renormalized back to the 
full ROM range (i.e. 𝑊!

! = 𝑊!"
! ). Since the range of twiddle 

addresses for a given radix-r is set by its largest associated coprime 
÷ r, all values of 2! < 2!,!"#, 3! < 3!,!"#, 5! < 5!,!"# are 
supported by only 9 ROMs with address renormalization (i.e. the 
renormalization factor for an initial radix-4 stage is 2!,!"#/2!). 
 

To extend this addressing scheme to combined PFA/CTA 
decompositions, the twiddle address of a radix-𝑟! stage is held for 
𝑧! butterflies. If 𝑟!’s corresponding coprime is 𝐶! , 𝑡 ∈ [0,𝐷) where 
D represents the number of coprimes in the decomposition, then  

𝑧! = 𝐶!!!!
!!!!!     (25) 

Note that when 𝑡 = 𝐷 − 1, 𝑧! = 1.  
 

 
Fig. 4. Reconfigurable processing element for DIF/DIT 
 
3.5. WFTA Butterfly Supporting Hardware Reuse 
 
The WFTA butterfly uses fewer multipliers at the expense of extra 
adders [18]. To minimize area, the adders/multipliers of a radix-7 
butterfly can be reused for radix-2/3/4/5, as in [9].  Fig. 5 shows a 
modified version of [9], used here. It supports optional logic 
pipelining per computation stage as required by the FPGA/ASIC 
and bypasses adders/multipliers when radices are unused. To 
support full reconfigurability, constant multipliers are not used, but 
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Fig. 5. Radix-2/3/4/5/7 WFTA butterfly with reuse [9] 
 
only products of complex inputs and a few real/imaginary values 
are needed. As Fig. 4 shows, the processing element (butterfly + 
twiddle multipliers) supports DIF/DIT reconfiguration using one 
set of twiddle multipliers with at least one stage of pipelining 
between memory accesses.   
 

4. DISCUSSION  
 

4.1. Scheduling Limitations 
 
For continuous data flow with LTE/WiFi FFTs, butterflies are 
computed at 2x the I/O clock rate. By using a single butterfly at 
this clock rate, the N=648 and N=864 calculations (requiring 
>1350 and >1728 computation cycles respectively) cannot be 
completed in time. Since the radix-2 stage (no twiddles) requires 
the most clock cycles (CCs), halving the iterations during that 
stage remedies this problem. This is achieved by operating two 
radix-2 butterflies in parallel, reusing radix-4 hardware, and 
shuffling butterflies to prevent bank conflicts. For the radix-2 stage 
of an N=24 FFT, Fig. 2 shows that the bth butterflies in groups 0/2 
and 1/3 use the same addresses and non-conflicting memory banks. 
Additional logic derived from this observation is used to guarantee 
FFT computation in N I/O CCs for LTE/WiFi.  
 

Only one butterfly may be used with the implemented 
banking scheme. In order to support area/throughput flexibility and 
an arbitrary number of butterflies in parallel, it is necessary to 
extend butterfly scheduling further. This is especially difficult 
when one desires a general solution for runtime-reconfigurable, 
mixed-radix FFTs without adding considerable complexity to the 
I/O (as would be incurred in [10]). However, it is not necessary to 
change operand locations in order to prevent bank conflicts. 
Instead, butterfly operations within a radix-r stage may be 
reordered to minimize conflicts.  
  
 4.2. Results & Comparisons with State-of-the-Art 
 
A design has been verified in a cycle-accurate fashion via Chisel’s 
built-in tester. As shown in Fig. 6, two generated FFT engines 
(24,24-bit I/O) were synthesized with 28nm standard cells and a 
clock target of 3.9ns to meet  LTE/WiFi  requirements.  There  is  a  

Table 1. Resource comparison for fixed N = 2048 
 This [3]1 [3]2 [3]3 [13] 

D. Mem 2N 7.3N 7.99N 4N N-1* 
T. ROM 0.75N 0.99N 0.99N        N - 

CCs ~3600 512 1024 11,287 2048 

# BFs 1 Rad-
4/2×2 

5 Rad-4 
+ Rad-2 11 1 11 

# Muls** 12 56 40 4 40 
1: Rad-4 streaming; 2: Rad-2 streaming; 3: Rad-2 iterative 
* No memory allocated for I/O unscrambling 
**Real muls in data path; complex multiplier = 4 real muls 
 

Table 2. Resource comparison for reconfigurable LTE/WiFi FFTs 
 This [5]* [2]* Xilinx* 

D. Mem 2N 2N 2N 2N 
T. ROM 1718 - -        - 

Calc. Clk/IO Clk** 2x 1x 2x 4x 
# Muls 26 44 26 16 

* Comparison #’s taken from [5]  
** Ratio of calculation to IO clock rates for continuous data flow 

 
Fig. 6. FFT area breakdown  
 
25% area penalty (compared to a fixed N=2048 engine) to support 
mixed-radix reconfigurability. The radix-4/2 WFTA butterfly is 
smaller than the reconfigurable 2/3/4/5 butterfly, and memories 
occupy a vast majority of the area. Support for all LTE/WiFi FFTs 
requires 2×(240-length memory + 4 banks of 512-length memory). 
 

The proposed generator can create FFT engines with 
performance comparable to state-of-the-art reconfigurable FFTs 
[2],[5]. Wang et al. [11] propose a pipelined architecture that can 
be reconfigured/scaled, but it isn’t implemented as a generator. 
While achieving higher throughput, the generated FFT engine uses 
50% less data memory and 25% smaller twiddle storage than the 
radix-2 N=2048 iterative FFT from Spiral’s online generator [3]. 
Memory savings are even greater relative to Spiral’s streaming 
FFTs, but with a clear area/throughput tradeoff (Table 1). Designs 
in Table 2 with fewer multipliers require higher calculation clock 
rates. Genesis [12] and the fixed pipelined architecture from [13] 
do not address I/O and its impact on memory.  
 
4.3. Conclusion 
 
This work reports a generator of memory-based, runtime-
reconfigurable 2n3m5k FFT engines, developed entirely in Chisel. 
The FFT design instances are competitive with state-of-the-art 
reconfigurable architectures, satisfying the WiFi and LTE 
operating modes while supporting continuous data flow with 2N 
memories. This work can be extended to support 7l coprimes and 
more generalized FFT scheduling for exploring area/throughput 
tradeoffs of reconfigurable architectures. 
 
The authors acknowledge DARPA CRAFT (HR0011-15-1-0010), 
NSF-GRFP (DGE-1106400), ASPIRE, and BWRC faculty, staff, 
and students (esp. S. Bailey, P. Rigge, S. Twigg) for their support.   
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