
A GENERATOR OF MEMORY-BASED, RUNTIME-RECONFIGURABLE 2N3M5K FFT
ENGINES

Angie Wang, Jonathan Bachrach, Borivoje Nikolić

University of California, Berkeley

ABSTRACT

Runtime-reconfigurable, mixed-radix FFT/IFFT engines are
essential for modern wireless communication systems. To comply
with varying standards requirements, these engines are customized
for each modem. The Chisel hardware construction language has
been used in this work to create a generator of runtime-
reconfigurable 2n3m5k FFT engines targeting software-defined
radios (SDR) for modern communications, but with flexibility to
support a wide range of applications. The generator uses a conflict-
free, in-place, multi-bank SRAM design, and exploits the duality
of decimation-in-frequency (DIF) and decimation-in-time (DIT)
FFTs to support continuous data flow with only 2N memory
blocks. DFT decomposition using the prime-factor algorithm
(PFA) followed by the Cooley-Tukey algorithm (CTA) reduces
twiddle ROM sizes. A programmable Winograd’s Fourier
Transform (WFTA) butterfly supporting radix-2/3/4/5/7 operations
reuses radix-7 hardware to support reconfigurability with minimal
area penalty. The generated FFTs use 50% less memory than
iterative FFTs from Spiral. The twiddle ROM size of the generated
LTE/WiFi FFT engine is 16% smaller than that of a 2048-pt Spiral
design.

Index Terms— Fast Fourier Transform, Cooley-Tukey,
Winograd’s Fourier Transform, Prime Factor Algorithm,
Reconfigurable Hardware Generator.

1. INTRODUCTION

OFDM-based wireless transceivers need reconfigurable IFFT/FFT
engines to support a multitude of channel bandwidths and
modulation schemes. The need for adaptation to a wide range of
channel bandwidths requires support for many different FFT sizes,
which are often not decomposable to 2n, making reuse of these
blocks difficult. For example, in order for an SDR to support both
WiFi and LTE with single-carrier frequency-division multiple
access (SC-FDMA), the maximum powers of (2, 3, 5) that must be
supported are (2048, 243, 25) [1]. The need for a plethora of FFT
engines has been addressed by building commercial
reconfigurable, application-specific FFT cores. However, they are
generally not resource efficient, which is problematic when users
only need a subset of FFT sizes and are otherwise severely
hardware constrained. Additionally, they cannot be easily modified
to support new standards. The terrestrial DTV system in China, for
example, requires a 3780-pt FFT and a radix-7 butterfly [2],[21]. A
step forward is the development of FFT generators; however, all
generators available in the open literature are of fixed size and not
applicable to SDR.

FFT generators such as Spiral exploit design regularity,
enabling usage in diverse applications with ideally no design
overhead [3],[20]. Highly parameterizable generators also enable
rapid and extensive design exploration, allowing throughput/area
tradeoffs [17], memory access methods, fixed point optimizations
(as in [4]), etc. to be studied in detail. However, no generator in
open literature supports all these requirements. Thus, we have
designed a generator of memory-based, runtime-reconfigurable
2n3m5k FFT engines. The design is hardware-optimized: it relies on
butterfly reuse, supports continuous data flow with 2N memory
blocks, and stores fewer twiddle factors than designs from state-of-
the-art generators like Spiral.

2. DESIGN METHODOLOGY

2.1. Memory-Based Architecture

Hardware FFT designs often use either in-place memory-based or
pipelined architectures. For large FFT sizes, memory-based
designs are smaller in area—usually relying on a single iterating
butterfly—but support lower throughput [2]. Pipelined designs use
more processing elements to improve throughput and more easily
support continuous data flow [16], but often overprovision
butterflies (i.e. log2N radix-2 butterflies for 2n-pt FFTs) to achieve
this.

Memory-based designs with conflict-free scheduling schemes
ease area/throughput tradeoffs and can compute an N-pt FFT in

𝐶 = 𝑆𝑃 + ⌈ !
!!!

!!!
!!! ⌉ (1)

clock cycles, where B is the # of parallel butterflies, ri is the radix
at the ith calculation stage, S is the # of stages, and P represents
the pipelining between memory accesses (butterfly pipelines +
sequential memory read delay). The first term shows that all i-1
operations must finish before stage i calculations begin. As the
pipeline is flushed out, calculations must be stalled. Eqn. (1) shows
that only two radix-2/4 butterflies are needed to complete a 2048-
pt FFT in <2048 cycles. Memory-based architectures require more
complex control logic, but adapt more easily to reconfigurable,
non-2n flavors.

2.2. Cooley-Tukey & Prime-Factor Algorithms

The widely-used Cooley-Tukey algorithm (CTA) computes 2n-pt
FFTs with a complexity of O(NlogN) [2],[14]:

𝑋 𝑘!, 𝑘! = 𝑊!
!!!! 𝑥 𝑛!,𝑛! 𝑊!!

!!!!
!! 𝑊!!

!!!!
!! (2)

As shown in [15], The DIF FFT is constructed with ordered inputs,
digit-reversed outputs, and twiddle multiplication (𝑊!

!!!!) at the
butterfly output. The opposite is true for a DIT FFT.

1016978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

Fig. 1. Memory access timing with 2N memory (DIF↔DIT every
2ath symbol)

The CTA can be used for coprime DFT decompositions, but

the prime-factor algorithm (PFA) achieves better efficiency by
eliminating twiddle multiplications [5],[19]:

𝑋 𝑘!, 𝑘! = 𝑥 𝑛!,𝑛! 𝑊!!
!!!!

!! 𝑊!!
!!!!

!! (3)
In [2], Hsiao et al. propose the following input/output index-
mapping scheme, which we adopt in our design:

𝑛 = 𝑁!𝑛! + 𝐴!𝑛! mod𝑁, 𝐴! = 𝑝!𝑁! = 𝑞!𝑁! + 1 (4)
𝑘 = 𝐵!𝑘! + 𝑁!𝑘! mod𝑁, 𝐵! = 𝑝!𝑁! = 𝑞!𝑁! + 1 (5)

When N1 and N2 are coprime, (4-5) simplify to one of several
possible PFA mappings. Otherwise, using 𝐴!,𝐵! = 1, the
equations reduce to the CTA mapping. Ordering the factorization
of N so that the PFA decomposition occurs before the CTA
minimizes twiddle multiplications [5]. This allows the twiddle
ROMs to be partitioned by coprimes to ease reconfigurability, and
reduces the necessary ROM size. Without further optimizations,
the # of twiddle factors stored for radix-2/3/4/5 support is:

𝑇 = 3×2!,!"#!! + 2×3!,!"#!! + 4×5!,!"#!! (6)
Only 1718 twiddle factors are needed for all WiFi/LTE FFTs, so
the twiddle ROM can be 16% smaller than that of a 2048-pt Spiral
design [3].

2.3. DIF ↔ DIT Duality for Memory Reduction

Typically, calculations can be done in-place, but I/O cannot
because input/output mappings are digit-reversed. A naïve ping-
pong memory-based FFT architecture thus requires at least 3N
memory entries to support continuous data flow. The duality of the
DIF/DIT decompositions (and extensions to the PFA) enables 2N
memory usage [6]. As shown in Fig. 1, reversing the
decomposition order every 2ath symbol allows x2a+2[n],x2a+3[n] to
be written to memory as X2a[k],X2a+1[k] is read out, in order, with
n=k. The generated design uses 50% less BRAM (in an FPGA)
than a Spiral equivalent.

To extend this duality to the PFA [2], first assume N is
decomposed in the order N1,N2,N3. Then, from (4-5),
𝑛 = 𝑁!𝑁!𝑛! + 𝐴!𝑛! mod𝑁, ñ! = 𝑁!𝑛! + 𝐴!𝑛! mod𝑁!𝑁! (7)
𝑘 = 𝐵!𝑘! + 𝑁!𝑘! mod𝑁, 𝑘! = 𝐵!𝑘! + 𝑁!𝑘! mod𝑁!𝑁! (8)

When N1,N2,N3 are coprime (GCD=1),
𝐴! = 𝑝!𝑁! = 𝑄!𝑁!𝑁! + 1, 𝑄! = 𝑞! (9)
𝐴! = 𝑝!𝑁! = 𝑄!𝑁! + 1, 𝑄! = 𝑞!𝑁! (10)
𝐵! = 𝑝!𝑁! = 𝑄!𝑁! + 1, 𝑄! = 𝑞!𝑁! (11)

Qx is calculated via the Scala implementation of the extended
Euclidean algorithm gcd 𝑎, 𝑏 = 𝑎𝑥 + 𝑏𝑦.
Substitution of (9-11) into (7-8) results in the mappings [2]:
𝑛 = 𝑁!𝑁!𝑛! + 𝑝!𝑁!𝑁!𝑛! + 𝑝!𝑁!𝑝!𝑁!𝑛! mod𝑁 (12)
𝑘 = 𝑝!𝑝!𝑁!𝑁!𝑘! + 𝑁!𝑝!𝑁!𝑘! + 𝑁!𝑁!𝑘! mod𝑁 (13)

A similar decomposition in the reversed order N3,N2,N1 results in:
𝑛 = 𝑁!𝑁!𝑛! + 𝑝!𝑁!𝑁!𝑛! + 𝑝!𝑝!𝑁!𝑁!𝑛! mod𝑁 (14)
𝑘 = 𝑝!𝑝!𝑁!𝑁!𝑘! + 𝑝!𝑁!𝑁!𝑘! + 𝑁!𝑁!𝑘! mod𝑁 (15)

As in the CTA case, to achieve in-place I/O with 2N memory,
𝑘!, 𝑘!, 𝑘! !! → 𝑛!,𝑛!,𝑛! !!!! (16)

Fig. 2. N=24 SFGs: 4, 2, 3 (left) and 3, 2, 4 (right) decompositions

The signal-flow graph (SFG) in Fig. 2 illustrates the duality of the
forward/reverse combined PFA+CTA decompositions used.

3. FFT HARDWARE GENERATOR

3.1. Translating Constraints into Reusable Hardware

The Chisel hardware construction language was chosen to build the
generator over traditional HDLs due to its improved
parameterization capabilities, modern programming language
features, and more compact code [7]. The generator has two
components. Given a set of user constraints (i.e. desired FFT
sizes), the “firmware part” uses Scala to calculate parameters and
create lists of constants (twiddles, coprimes, etc.) for look-up table
(LUT) generation. The LUT construction can be performed in 2
lines of Scala code, without requiring the user to switch to some
intermediate representation. The “hardware component” is an FFT
template containing blocks that control data flow between I/O,
memories, and the butterfly unit, as in Fig. 3. The FFT template
uses the calculated parameters to specify memory sizes and
distribution, calculation + I/O rates, amount of butterfly pipelining,
signal bit widths, and a butterfly to support all needed radices.
Parameters can be updated without rewriting code, and
synthesizable Verilog is generated directly by Chisel. Chisel also
simplifies DSP validation via two simulation modes: 1) floating-
point for accurate verification and 2) fixed-point to evaluate
realistic hardware metrics.

3.2. I/O Control Logic

The index vector generator from [2] has been extended for this
design. For decomposition of coprime N1,N2,N3, the counters
(𝑛!! ,𝑛!! ,𝑛!!) and stored 𝑄!! = 𝑁! − 𝑄! mod𝑁! values are used to
generate indices:

𝑛! = 𝑛!! + 𝑄!!𝑛! mod𝑁!, 𝑛! = 𝑛!! + 𝑄!!𝑛! mod𝑁! (17)
The counter sequence is implemented in the following pseudocode:

𝑛! = 𝑛!! ≔ {𝑛!! + 1 𝑖𝑓 𝑛!! ≠ 𝑁! − 1; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}
𝑛!!!! ≔ {𝑛!! + 1 𝑖𝑓 𝑛!! ≠ 𝑁! − 1; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} on 𝑛!!!! → 0
The counter 𝑛! increments and wraps when 𝑛!! = 𝑁! − 1 & 𝑛!! =
𝑁! − 1 (WC). Thus, the coprime index vector generator performs:

𝑅! ≔ {0 𝑖𝑓 𝑊𝐶; 𝑒𝑙𝑠𝑒 𝑅! + 𝑄!! mod𝑁!}
𝑅! ≔ {0 𝑖𝑓 𝑛!! = 𝑁! − 1; 𝑒𝑙𝑠𝑒 𝑅! + 𝑄!! mod𝑁!}
𝑛! = 𝑛!! + 𝑅! mod𝑁!, 𝑛! = 𝑛!! + 𝑅! mod𝑁!

Because 𝑅! ,𝑄!! ,𝑛!! ∈ [0,𝑁!), the sums are < 2𝑁! − 1, so a simple
subtractor and two-input MUX can compute the modulus, as in [5].
One coprime index vector generator can be used for both DIF/ DIT
with N1,N2,N3 reversal, but Qx’s must be found separately.

Symbol 0 Symbol 1 Symbol 2 Symbol 3 Symbol 4

Mem B Mem A

Symbol 0 Symbol 1

Mem A Mem B

Mem A Mem B

In-Order
Time Data

Input/Output

Calculations Mem A Mem B

Mem A

Symbol 2
In-Order

Freq. Data

1017

Fig. 3. Generator block diagram consisting of 1) a “firmware part” for parameterization (left) and 2) a hardware FFT template (right)

To support coprime factorization and then CTA, the vector

𝑛!,! ,𝑛!,!!!,… ,𝑛!,!,𝑛!,! ,… ,𝑛!,!,𝑛!,! ,… ,𝑛!,! can be obtained by
using the 𝑛!,𝑛!,𝑛! values to address corresponding decimal-to-
base-r LUTs. However, we have chosen instead to store the 𝑄!! s in
base-r notation and implement base-r adders. The coprime modulus
operations are obtained “for free” by simply masking out the
appropriate base-r digits, and the final index vector is directly
obtained without additional LUTs. As an example, if N3 is 5k, 𝑛! is
decomposed into the base-5 digits (𝑛!,! ,𝑛!,!!!,… ,𝑛!,!). For an
N1',N2',N3'=N3,N2,N1 decomposition, 𝑛! uses base-5 and the index
vector is reversed for memory address/bank generation:
(𝑛!,!,… ,𝑛!,! ,𝑛!,!,… ,𝑛!,! ,𝑛!,!,… ,𝑛!,!). The individual coprimes
are vectorized in digit-reversed order.

3.3. Calculation + Memory Access Control

The DIF FFT uses S radix stages. Fig. 1 shows that the number of
radix-𝑟! butterflies at stage i is 𝑁/𝑟!. For 𝑖 > 0, butterflies occur in

𝑟!!!!
!!! groups of 𝑟!!!!

!!!!! ordered operations. For the DIT-
equivalent FFT, the DIF stages are traversed in reverse. A set of 𝑛!
counters is used to index operands and track the butterfly iterations
per stage:

𝑛!!! ≔ {𝑛!!! + 1 𝑖𝑓 𝑛!!! ≠ 𝑟!!! − 1 & 𝑖 ≠ 𝑆 − 1; 𝑒𝑙𝑠𝑒 0}
𝑛!!!!! ≔ {𝑛! + 1 𝑖𝑓 𝑛! ≠ 𝑟! − 1, 𝑖 ≠ 𝑥; 𝑒𝑙𝑠𝑒 0} on 𝑛!!! → 0
Because 𝑟! ≤ 𝑟!"#, each butterfly operand indexed by 𝑗 < 𝑟! is
guaranteed to come from a different bank 𝑏! [2], given by:

𝑏! = 𝑛!!!!
!!! mod𝑟!"# (18)

𝑏!!!!!! = (𝑏! + 𝑗)mod𝑟!"# (19)
Mod operations are more complex than the XOR logic in [8], but
they simply extend XOR (add mod 2) to more general base-r’s,
which is useful in mixed-radix designs. Because the N data are
split amongst 𝑟!"# banks, data in each bank are mapped to
[0,𝑁/𝑟!"#). A possible addressing scheme if 𝑟! = 𝑟!"# (where 𝑎!
is the address of the jth butterfly operand) is:

𝐴!!! = 1, 𝐴!!!!! = 𝐴!!!×𝑟!!! (20)
𝑎! = 𝐴!!!!

!!! 𝑛! (21)
𝑎!!! = 𝑎!!! + 𝐴! (22)

With pipelined butterflies, calculations are temporarily stalled and
memory writes are disabled, so stages can compute on fresh data.

3.4. Twiddle Address Generation

For an N-pt DIF FFT, the non-trivial ith stage twiddles 𝑊!

!!!" , 𝑗 ∈
[1, 𝑟!) repeated in each butterfly group are addressed by:

𝑛!",!!! = [0,𝑁/𝑟!) (23)
𝑛!",!!! = (𝑟!!!!

!!!) × [0,𝑁/(𝑟!!
!!!) − 1] (24)

As shown in [15], the first CTA DIF stage requires the most
twiddle factors. Because the DFT is decomposed into smaller sizes,
each subsequent stage uses fewer unique twiddles, and the last
stage requires none. The twiddle index is renormalized back to the
full ROM range (i.e. 𝑊!

! = 𝑊!"
!). Since the range of twiddle

addresses for a given radix-r is set by its largest associated coprime
÷ r, all values of 2! < 2!,!"#, 3! < 3!,!"#, 5! < 5!,!"# are
supported by only 9 ROMs with address renormalization (i.e. the
renormalization factor for an initial radix-4 stage is 2!,!"#/2!).

To extend this addressing scheme to combined PFA/CTA
decompositions, the twiddle address of a radix-𝑟! stage is held for
𝑧! butterflies. If 𝑟!’s corresponding coprime is 𝐶! , 𝑡 ∈ [0,𝐷) where
D represents the number of coprimes in the decomposition, then

𝑧! = 𝐶!!!!
!!!!! (25)

Note that when 𝑡 = 𝐷 − 1, 𝑧! = 1.

Fig. 4. Reconfigurable processing element for DIF/DIT

3.5. WFTA Butterfly Supporting Hardware Reuse

The WFTA butterfly uses fewer multipliers at the expense of extra
adders [18]. To minimize area, the adders/multipliers of a radix-7
butterfly can be reused for radix-2/3/4/5, as in [9]. Fig. 5 shows a
modified version of [9], used here. It supports optional logic
pipelining per computation stage as required by the FPGA/ASIC
and bypasses adders/multipliers when radices are unused. To
support full reconfigurability, constant multipliers are not used, but

1018

Fig. 5. Radix-2/3/4/5/7 WFTA butterfly with reuse [9]

only products of complex inputs and a few real/imaginary values
are needed. As Fig. 4 shows, the processing element (butterfly +
twiddle multipliers) supports DIF/DIT reconfiguration using one
set of twiddle multipliers with at least one stage of pipelining
between memory accesses.

4. DISCUSSION

4.1. Scheduling Limitations

For continuous data flow with LTE/WiFi FFTs, butterflies are
computed at 2x the I/O clock rate. By using a single butterfly at
this clock rate, the N=648 and N=864 calculations (requiring
>1350 and >1728 computation cycles respectively) cannot be
completed in time. Since the radix-2 stage (no twiddles) requires
the most clock cycles (CCs), halving the iterations during that
stage remedies this problem. This is achieved by operating two
radix-2 butterflies in parallel, reusing radix-4 hardware, and
shuffling butterflies to prevent bank conflicts. For the radix-2 stage
of an N=24 FFT, Fig. 2 shows that the bth butterflies in groups 0/2
and 1/3 use the same addresses and non-conflicting memory banks.
Additional logic derived from this observation is used to guarantee
FFT computation in N I/O CCs for LTE/WiFi.

Only one butterfly may be used with the implemented
banking scheme. In order to support area/throughput flexibility and
an arbitrary number of butterflies in parallel, it is necessary to
extend butterfly scheduling further. This is especially difficult
when one desires a general solution for runtime-reconfigurable,
mixed-radix FFTs without adding considerable complexity to the
I/O (as would be incurred in [10]). However, it is not necessary to
change operand locations in order to prevent bank conflicts.
Instead, butterfly operations within a radix-r stage may be
reordered to minimize conflicts.

 4.2. Results & Comparisons with State-of-the-Art

A design has been verified in a cycle-accurate fashion via Chisel’s
built-in tester. As shown in Fig. 6, two generated FFT engines
(24,24-bit I/O) were synthesized with 28nm standard cells and a
clock target of 3.9ns to meet LTE/WiFi requirements. There is a

Table 1. Resource comparison for fixed N = 2048
 This [3]1 [3]2 [3]3 [13]

D. Mem 2N 7.3N 7.99N 4N N-1*
T. ROM 0.75N 0.99N 0.99N N -

CCs ~3600 512 1024 11,287 2048

BFs 1 Rad-
4/2×2

5 Rad-4
+ Rad-2 11 1 11

Muls** 12 56 40 4 40
1: Rad-4 streaming; 2: Rad-2 streaming; 3: Rad-2 iterative
* No memory allocated for I/O unscrambling
**Real muls in data path; complex multiplier = 4 real muls

Table 2. Resource comparison for reconfigurable LTE/WiFi FFTs
 This [5]* [2]* Xilinx*

D. Mem 2N 2N 2N 2N
T. ROM 1718 - - -

Calc. Clk/IO Clk** 2x 1x 2x 4x
Muls 26 44 26 16

* Comparison #’s taken from [5]
** Ratio of calculation to IO clock rates for continuous data flow

Fig. 6. FFT area breakdown

25% area penalty (compared to a fixed N=2048 engine) to support
mixed-radix reconfigurability. The radix-4/2 WFTA butterfly is
smaller than the reconfigurable 2/3/4/5 butterfly, and memories
occupy a vast majority of the area. Support for all LTE/WiFi FFTs
requires 2×(240-length memory + 4 banks of 512-length memory).

The proposed generator can create FFT engines with
performance comparable to state-of-the-art reconfigurable FFTs
[2],[5]. Wang et al. [11] propose a pipelined architecture that can
be reconfigured/scaled, but it isn’t implemented as a generator.
While achieving higher throughput, the generated FFT engine uses
50% less data memory and 25% smaller twiddle storage than the
radix-2 N=2048 iterative FFT from Spiral’s online generator [3].
Memory savings are even greater relative to Spiral’s streaming
FFTs, but with a clear area/throughput tradeoff (Table 1). Designs
in Table 2 with fewer multipliers require higher calculation clock
rates. Genesis [12] and the fixed pipelined architecture from [13]
do not address I/O and its impact on memory.

4.3. Conclusion

This work reports a generator of memory-based, runtime-
reconfigurable 2n3m5k FFT engines, developed entirely in Chisel.
The FFT design instances are competitive with state-of-the-art
reconfigurable architectures, satisfying the WiFi and LTE
operating modes while supporting continuous data flow with 2N
memories. This work can be extended to support 7l coprimes and
more generalized FFT scheduling for exploring area/throughput
tradeoffs of reconfigurable architectures.

The authors acknowledge DARPA CRAFT (HR0011-15-1-0010),
NSF-GRFP (DGE-1106400), ASPIRE, and BWRC faculty, staff,
and students (esp. S. Bailey, P. Rigge, S. Twigg) for their support.

01

01
01

01
01

01

0
1

0
1

S0,1

S1,1

0

0

S1,2

A0

A1

A2

A3

A4

A5

A6

A7

R

R

R

R

I

I

I5

I7

S3

0

S2

0

S1,5

0S1,5

S0,6

0

a(0)

a(1)

a(6)

a(4)

a(3)

a(2)

a(5)

b(0)

b(1)

b(2)

b(4)

b(6)

b(5)

b(3)

0 0.05 0.1 0.15 0.2

LTE/Wi-Fi

N=2048

mm2

WFTA
Twiddle Muls
Twiddle ROM
SRAM
Control

1019

5. REFERENCES

[1] 3GPP TS 36.211, “Physical Channels and Modulation,” V
12.0.0, December 2013.

[2] C.-F. Hsiao, Y. Chen and C.-Y. Lee “A Generalized Mixed-
Radix Algorithm for Memory-Based FFT Processors,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 1, pp. 26-30,
2010.

[3] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K.
Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code Generation
for DSP transforms,” Proc. of IEEE, special issue on “Program
Generation, Optimization, and Adaptation”, vol. 93, no. 2, pp.
232–275, 2005.

[4] R. Koutsoyannis, P. Milder, C. Berger, M. Glick, J. Hoe, and
M. Püschel, “Improving Fixed-Point Accuracy of FFT in O-OFDM
Systems,” Proc. of the Intl. Conf. on Acoustics, Speech, and Signal
Processing, pp. 1585-1588, March 2012.

[5] J. Chen, J. Hu, S. Lee, and G. Sobelman, “Hardware Efficient
Mixed Radix-25/16/9 FFT for LTE Systems,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 23, no. 2,
pp. 221–229, Feb 2015.

[6] C. S. Burrus and P.W. Eschenbacher, “An In-Place, In-Order
Prime Factor FFT Algorithm,” IEEE Trans. Acoustics, Speech, and
Signal Processing, vol. 29, no. 4, pp. 806-817, Aug. 1981.

[7] J. Bachrach, H. Vo, B. Richards, K. Asanovic, and J.
Wawrzynek, “Chisel: Constructing Hardware in a Scala Embedded
Language,” in Proceedings of the 49th Design Automation
Conference (DAC), 2012.

[8] H. Sorokin, J. Takala, “Conflict-Free Parallel Access Scheme
for Mixed-Radix FFT Supporting I/O Permutations,” Proc. of the
Intl. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP2011), Prague, C.Z., pp. 2709-1712, May 2011.

[9] F. Qureshi, M. Garrido, and O. Gustafsson, “Unified
Architecture for 2, 3, 4, 5, and 7-point DFTs Based on Winograd
Fourier Transform Algorithm,” Electronics Letters, vol. 49, no. 5,
pp. 348–349, 2013.

[10] S. Richardson, D. Marković, A. Danowitz, J. Brunhaver, and
M. Horowitz, “Building Conflict-Free FFT Schedules,” IEEE
Transactions on Circuits and Systems, vol. 62, no. 4, pp. 1146-
1155, April 2015.

[11] G. Wang, B. Yin, I. Cho, J. Cavallaro, S. Bhattacharyya, and
J. Takala, “Efficient Architecture Mapping of FFT/IFFT for
Cognitive Radio Networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on, pp.
3933–3937, May 2014.

[12] “Creating Chip Generators Using Genesis2,” Stanford,
http://genesis2.stanford.edu/.

[13] J. Löfgren and P. Nilsson, “On Hardware Implementation of
Radix 3 and Radix 5 FFT Kernels for LTE Systems,” Proc.
NORCHIP Conf., pp. 1–4, Nov. 2011.

[14] J. W. Cooley and J. W. Tukey, “An Algorithm for the
Machine Calculation of Complex Fourier Series,” Math. Comput.,
vol. 19, no. 90, pp. 297–301, 1965.

[15] C. Sidney Burrus, “Appendix 1: FFT Flowgraphs,” OpenStax
CNX. September 18, 2009 http://cnx.org/contents/e460644d-c1d6-
4dee-a60e-3ee5220e88ba@11.

[16] T. D. Chiueh and P. Y. Tsai, OFDM Baseband Receiver
Design for Wireless Communications. New York: Wiley, 2007.

[17] C.-H. Yang, T.-H. Yu, and D. Marković, “Power and Area
Minimization of Reconfigurable FFT Processors: A 3GPP-LTE
Example,” IEEE J. Solid-State Circuits , vol. 47, no. 3, pp. 757–
768, Mar. 2012.

[18] S. Winograd, “On Computing the Discrete Fourier
Transform,” Math. Comp., vol. 32, pp. 175–199, 1978.

[19] I. J. Good, “The Interaction Algorithm and Practical Fourier
Analysis: An Addendum,” J. R. Statist. Soc., no. 2, pp. 372–375,
1960.

[20] P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel,
“Computer Generation of Hardware for Linear Digital Signal
Processing Transforms,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 17, no. 2, p. 15, 2012.

[21] Z.-X. Yang, Y.-P. Hu, C.-Y. Pan, and L. Yang, “Design of a
3780-point IFFT Processor for TDS-OFDM,” IEEE Trans.
Broadcast., vol. 48, no. 1, pp. 57–61, Mar. 2002.

1020

