
FPGA BASED IMPLEMENTATION OF DEEP NEURAL NETWORKS USING ON-CHIP MEMORY ONLY

Jinhwan Park and Wonyong Sung

Department of Electrical and Computer Engineering
Seoul National University

Seoul 151-744 Korea
Email: jhpark@dsp.snu.ac.kr, wysung@snu.ac.kr

ABSTRACT

Deep neural networks (DNNs) demand a very large amount of
computation and weight storage, and thus efficient implementation
using special purpose hardware is highly desired. In this work, we
have developed an FPGA based fixed-point DNN system using only
on-chip memory not to access external DRAM. The execution time
and energy consumption of the developed system is compared with a
GPU based implementation. Since the capacity of memory in FPGA
is limited, only 3-bit weights are used for this implementation, and
training based fixed-point weight optimization is employed. The im-
plementation using Xilinx XC7Z045 is tested for the MNIST hand-
written digit recognition benchmark and a phoneme recognition task
on TIMIT corpus. The obtained speed is about one quarter of a GPU
based implementation and much better than that of a PC based one.
The power consumption is less than 5 Watt at the full speed oper-
ation resulting in much higher efficiency compared to GPU based
systems.

Index Terms— Deep Neural Networks, FPGA, fixed-point op-
timization

1. INTRODUCTION

Feed-forward deep neural networks (DNNs) show quite good per-
formance in speech and pattern recognition applications [1,2]. Real-
time implementation of feed-forward deep neural networks demand
a very large number of arithmetic and memory access operations,
thus DNNs are usually implemented using GPUs (Graphics Process-
ing Units) [3, 4]. GPU based implementations consume large power
exceeding 100 Watt [5]. In addition, a GPU based system needs a PC
that occupies a large space, which may not be suitable for embedded
applications requiring small foot-print units.

There are several previous works on VLSI and FPGA based im-
plementation of a DNN or a CNN (Convolutional Neural Network).
The system in [6] stores the weights at the external DRAM, and
can configure the algorithm fairly flexibly. However, this system de-
mands a large number of external memory accesses, and the through-
put is fairly limited. A full custom VLSI that employs thousands of
processing units and stores the weights at the on-chip memory was
developed in [7]. This custom VLSI based system can achieve a very
high throughput and consumes small power, but is not flexible.

In a general feedforward deep neural network with multiple hid-
den layers, each layer k has a signal vector yk, which is propagated

This work was supported in part by the Brain Korea 21 Plus Project and the National
Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP)
(No. 2015R1A2A1A10056051).

to the next layer by multiplying the weight matrix Wk+1, adding bi-
ases bk+1, and applying the activation function φk+1(·) as follows:

yk+1 = φk+1(Wk+1yk + bk+1). (1)

A deep neural network usually employs one to six hidden layers.
One of the most general activation functions is the logistic sigmoid
function defined as

σ(x) =
1

1 + e−x
. (2)

In fully-connected feedforward deep neural networks, each weight
matrix between two layers demands parameters whose capacity is
determined by the product of units in the anterior and the poste-
rior layers. Considering a DNN employing hidden layers with 1,000
units, each weight matrix demands about one million parameters.
This means that a few million weights are needed for the implemen-
tation of a typical DNN and more than 10MB of memory is needed
when the weights are represented in the floating-point format. The
number of output signals and that of biases are both proportional
to the layer size. The signal word-length affects the complexity of
arithmetic units and interconnection networks.

Reducing the complexity of neural networks using quantization
or pruning has been studied much [8–13]. Instead of direct weight
quantization, retraining with backpropagation was developed in [7,
14, 15]. The designed networks employed usually 2-8 bits for the
weights and represented the signals in analog or high precision fixed-
points using more than 7 bits. Recently, a research work that tries to
increase the sparseness of the weights by pruning out small valued
ones has been developed in order to reduce the model size and the
execution time with a CPU [12, 13].

In this paper, we have developed a DNN using an off-the-shelf
Xilinx FPGA, XC7Z045 aiming for design flexibility, high through-
put with thousands of processing units, and low-power consumption
with virtually no DRAM accesses by storing all the weights on on-
chip memory. Since the on-chip memory of an FPGA is the most
limited resource for the implementation of a DNN, we employ the
training based weight quantization scheme and achieve a quite good
performance only with 3 bits for the weight representation [13]. A
handwritten digit recognition and phoneme recognition problems are
implemented in this FPGA. It is, however, takes less than a few hours
to develop a DNN with a different network configuration.

This paper is organized as follows. In Section 2, we describe the
algorithm and the architecture for this FPGA based DNN system.
Section 3 describes the implementation detail of this work. The ex-
perimental results are shown in Section 4. Concluding remarks are
shown in Section 5.

1011978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

2. ALGORITHM AND ARCHITECTURE OPTIMIZATION

2.1. Fixed-Point DNN design

The DNN for handwritten digit recognition has three hidden layers,
and the layer configuration is 784-1022-1022-1022-10. The input of
the DNN is a 28 × 28 (=784) pixel image represented in 8-bit gray
scale. The output corresponds to the likelihood of each digit. This
algorithm needs approximately 3 million weights, which is the sum
of 784 × 1022 + 1022 × 1022 + 1022 × 1022 + 1022 × 10.

The DNN for phoneme recognition has four hidden layers. Each
of the hidden layers has 1022 units. The input layer of the network
has 429 units to accept 11 frames of MFCC (Mel-frequency cepstral
coefficient) parameters. The output is the likelihood of 61 phonemes.

The FPGA used for this implementation is Z-7045 of Xilinx.
This FPGA contains 218K LUTs (Look Up Tables), 2.18 MB of
block RAM (BRAM), and 900 digital signal processing (DSP)
blocks in addition to dual A9 ARM Cortex CPUs. Even if we
employ 8 bits for representing each weight, the BRAM cannot
accommodate all the weights and thus many DRAM accesses are
needed.

In order to store all the weights on the FPGA, we apply fixed-
point optimization for the weights, and successfully reduce the word-
length into 3 bits. The weights are trained at the off-line and down-
loaded to this system. The network training consists of three steps;
the first one is an ordinary floating-point training, the second is the
optimal uniform quantization minimizing the error in L2 norm, and
the final step is the retraining with fixed-point weights.

For digit classification, the network is pre-trained with unsuper-
vised greedy RBM (Restricted Boltzmann Machine) learning. Each
layer is pre-trained by 50 epochs of 1-step contrastive-divergence
based stochastic gradient descent with the mini-batch size of 100,
the learning rate of 0.1, and the momentum of 0.9. Then, we ran
100 epochs of the backpropagation with stochastic gradient descent
using the mini-batch size of 100, the fixed learning rate of 0.1, and
the momentum of 0.9. MNIST dataset is used as the training set.

For phoneme recognition, each layer is pre-trained by 50 epochs
of stochastic gradient descent with the mini-batch size of 128, the
learning rate of 0.05, and the momentum of 0.9. We ran 100 epochs
of the backpropagation using the mini-batch size of 128, the fixed
learning rate of 0.05, and the momentum of 0.9 for fine tuning.
TIMIT database is used for training. Dropout is applied for train-
ing both of networks.

After obtaining the floating-point weights, we apply fixed-point
optimization that employs retraining after quantization [14]. The
same training parameters are used for retraining weights. The
weights of fixed-point DNN employ 3 bits for the input and hid-
den layers, and 8 bits for the output layer that is more sensitive to
quantization. By this fixed-point optimization, we can obtain the
miss-classification rate (MCR) of 1.08% [14]. Note that the DNN
with 1022 floating-point units show the MCR of 1.06%, and the
DNN with 900 floating-point units yields the MCR of 1.12%. For
the phoneme recognition, the phoneme error rate of the floating-
point DNN is 27.81%, while that of the 3-bit fixed-point DNN is
28.39%.

2.2. Parallel-serial architecture

The DNN for digit recognition needs approximately 3K neuron-like
processing units: 1022 units for implementing hidden layer1, 1022

Fig. 1. System Overview.

for hidden layer2, 1022 for hidden layer3, and 10 for the output layer.
Each neuron-like processing unit conducts approximately 1022 mul-
tiply and add operations to process one input image. As a result, the
total amount of computation for processing one image is approxi-
mately 3 million operations.

In order to trade the throughput and the hardware resources, we
employ the parallel-serial architecture. In this design, each layer
contains 1022 processing units (PUs), which means parallel PU op-
erations, and each PU computes the output in 1022 clock cycles,
which is the serial processing in each PU. At each clock cycle, the
PU conducts only one multiply-add operation. In fact, since the
weights are quantized to 3 bits in the input and hidden layers, the
PUs do not need multipliers. However, the synthesis shows that this
design results in overuse of LUTs. As a result, the number of PUs
is halved and the processing time becomes doubled as 2044 + some
overhead cycles. With the system clock frequency of 100 MHz, this
design can compute approximately 48.9 K outputs per second.

3. FPGA BASED IMPLEMENTATION

Figure 1 shows the overall block diagram of the system. The pro-
cessing system (PS) and the programmable logic (PL) communi-
cate through the general purpose IO (GPIO). For digit recognition,
one hundred images are recognized at each operation in this design.
However, the number of images to process at each batch can be
changed easily. The operations are performed as follows.

• PS moves 100 handwritten images stored at the DRAM to
BRAM0 (or BRAM1 alternatively), and activates the start sig-
nal in GPIO0.

• PL conducts the recognition of 100 images, writes the result
to BRAM0 (or BRAM1 alternatively), and then activates the
‘Done’ signal in GPIO0 when the recognition process is fin-
ished. This process takes approximately 200K cycles.

As the operation is explained in the above, the PS and PL work
in an interleaved manner using BRAM0 and BRAM1. The system
for phoneme recognition operates in a similar way.

1012

Fig. 2. Architecture of deep neural network circuit.

Fig. 3. Structure of a tile. M = 1022 for this figure.

Figure 2 shows the overall architecture of the circuit, where each
tile implements a layer of the DNN algorithm. The input and output
of the tile employ 8-bit word-length for signal representation. The
structure of a tile is shown in Fig. 3. The tiles used for hidden layers
have 511 (=1022/2) PUs each. Since each PU conducts the operation
for two nodes, it has two output registers. Each tile contains BRAM
for weight storage. Only one activation function is implemented in
each tile.

The output tile contains a small number of output nodes, and
employs 8-bit weight values. Since the number of nodes at the output
tile is small, each PU conducts the operations that correspond to the
function of one neuron. The result of the output node is compared to
find the recognized digit or phoneme.

Figure 4 shows the structure of each PU. Each PU multiplies the
input with the weight of -3 to 3, and adds the multiplied result to
the partial sum stored in the accumulation register. According to
the value of the weight, -3Din, -2Din, -Din, 0, Din, 2Din, or 3Din
is added to the partial sum. This logic is implemented using LUTs
without consuming any DSP block. The word-length of the adder
in the PU is 16 bits. The final output of each PU is multiplied with
the coefficient ∆, then the result (8-bit) is delivered to the next layer
through the activation function.

The activation function is also implemented using combinational
logic circuits. The minimized sum-of-product representation is used
for the sigmoid function as proposed in [16]. We employ 8 bits for
both input and output signals of the activation function.

The timing diagram of the operation is shown in Fig. 5. At first,
‘rstnet’ signal initializes the PUs. Since the value of ‘selnet’ is 0,

Fig. 4. Structure of a processing unit.

Fig. 5. Timing diagram of control signals.

each PU is initialized as its Bias0 value. After then, each tile re-
ceives 511 inputs from the previous tile and conducts the weight and
accumulation operations using all the PUs in the tile. Note that it
takes 2 clock cycles for processing one input because one PU imple-
ments two nodes. After then, the ‘selnet’ becomes 1, and the next
511 input is processed using Bias1 and the corresponding weights.
After finishing this, the ‘cntDigit’ increases, and the next image is
processed at the same way. When the cntDigit becomes 100, ‘fin’
signal is generated and the PL becomes in the idle state. In order to
recognize one image, this circuit consumes 2063 (=2×1022 + over-
head) clock cycles.

4. EXPERIMENTAL RESULTS

This work is designed using Xilinx Vivado (v.2014.4), and imple-
mented on a Xilinx ZC706 evaluation board. This board contains
XC7Z045 FPGA that contains both ARM CPUs and configurable
logic circuits. The CPU frequency is 800 MHz. The Programmable
Logic (PL) operates at 172 MHz for digit classification and 140
MHz for phoneme recognition. The FPGA resource utilization is
shown in Table 1, where the designs with and without DSP slices
are compared. Using DSP slices does not reduce the demand of FFs
(flip-flops) and LUTs much. For comparison, resource utilization of
the implementation with 8-bit fixed-point weights is given. It con-
sumes almost all of LUTs and entire DSP slices on the FPGA chip
because 8-bit weights need hardware multipliers for the implemen-
tation. The 8-bit representation for weights cannot be implemented
on this FPGA because the BRAM capacity is not sufficient.

1013

Table 1. FPGA resource utilization for digit recognition with differ-
ent weight precision.

Resource FF LUT BRAM DSP

3-bit without DSP 130237 124862 323 0

3-bit with DSP 130802 121173 323 900

8-bit fixed point 136677 213593 750.5 900

Available 437200 218600 545 900

Table 2. FPGA resource utilization for phoneme recognition.

Resource FF LUT BRAM DSP

Used 161923 137300 378 0

Available 437200 218600 545 900

The time spent for recognizing 10,000 images is measured as
142 msec. This implementation can process about 70,000 images
at each second. If weights were stored in DRAM, the memory
bandwidth of 630 Gbit/sec (=3×3M×70000) is required to achieve
this throughput. The memory bandwidth of the DRAM in Xilinx
ZC706 board is 102.4 Gbit/sec. It is possible to reduce the number
of DRAM accesses by processing multiple images at a time, which
however demands extra internal registers for storing intermediate
results and incurs more delay.

For the phoneme recognition application, the time spent for
recognizing 10,000 frames is measured as 151 msec. This can
process about 66,000 frames per second. Since a real-time speech
recognition mostly uses 10 ms as for the frame size, this imple-
mentation result translates 660 times of speed-up over the real-time.
One FPGA can conducts phoneme recognition needed for real-time
speech recognition of over 600 people.

The power consumption shown at the simulation tool is shown in
Table 3. The real power measurement of the evaluation board is 11.4
Watt and 13.1 Watt for digit and phoneme recognition, respectively,
which includes all the power consumption in the peripherals and the
power circuit. As shown in this table, the power consumed in the
recognition circuit is about 5 Watt for obtaining the throughput of
70,000 images/sec. This translates 71 μJ for one image recognition.

We compare this implementation with that of a high-end GPU,
the NVIDIA GeForce Titan Black. The GPU can recognize 250K
images at each second, which is about 3.6 times higher than that of
this FPGA based implementation. Note that the GPU used floating-
point arithmetic for this test. But the accuracy difference is very
minimal. However, the GPU system not only demands a much big-
ger physical space but also consumes much higher power. The power
consumption of the GPU system is about 250 Watt [5]. Thus, the en-
ergy efficiency of this FPGA based system is considered to be over
10 times higher than that of the GPU based system.

During the last a few years, many DNN algorithms have been
developed. Some of them is more complex than this design. A
very complex DNN used for phoneme recognition demands 20 mil-

Table 3. On-Chip power consumption (Watt) estimated by Xilinx
Vivado.

Usage Digit classification Phoneme recognition

Clocks 0.579 0.528

Signals 1.202 3.559

Logic 0.849 2.810

BRAM 0.436 1.308

PS7 1.623 1.625

Device Static 0.291 0.357

Total 4.982 9.830

Table 4. Hardware resources in Xilinx FPGA families.

Kintex-7 Virtex-7 Kintex
UltraScale

Virtex
UltraScale

LUTs (K) 299 1221 663 2533

Block RAM (Mb) 34 68 76 132.9

DSP slices 1920 3600 5520 2880

lion weights [17]. Thus, this DNN circuit needs about 60 Mbits of
BRAM to operate using 3-bit weights stored on on-chip memory.
The FPGA density is growing very rapidly as well. Table 4 shows
the hardware resources available in recent Xilinx FPGA families.
Note that the FPGA employed to this design is equivalent to the
Kintex-7 family. This table shows that even a very complex DNN
algorithm can be implemented using an FPGA with only on-chip
memory. More noticeable is the speed. With only 124K LUTs, the
design achieved about 28% speed of a high-end GPU based system.
If we employ the highest density FPGA containing 2533K LUTs,
it would be possible to acheive more than 5 times of the speed-up
compared to the GPU based system. The IO bandwidth bound is not
a limitation because no DRAM access is needed.

5. CONCLUDING REMARKS

We show an FPGA based implementation of a deep neural network
for the handwritten digit recognition and the phoneme recognition
problems, which needs millions of weights and arithmetic opera-
tions for producing one output. In order to use only on-chip mem-
ory for weight storage, the weights are represented in 3 bits, while
the internal signals employ the precision of 8 bits. A retrain based
fixed-point weight optimization technique is employed to reduce the
performance gap with floating-point algorithms. The implemented
FPGA shows the throughput that is about one quarter of a GPU
based system, but only demands approximately 2˜4% of the power
consumption of the GPU system, resulting in over 10 times of power
efficiency. If we employ a larger FPGA, such as Virtex-7 or Vir-
tex UltraScale, a much higher throughput than that of a GPU based
system can be achieved.

1014

6. REFERENCES

[1] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh, “A fast
learning algorithm for deep belief nets,” Neural computation,
vol. 18, no. 7, pp. 1527–1554, 2006.

[2] Geoffrey E Hinton and Ruslan R Salakhutdinov, “Reducing
the dimensionality of data with neural networks,” Science, vol.
313, no. 5786, pp. 504–507, 2006.

[3] Zhilu Chen, Jing Wang, Haibo He, and Xinming Huang, “A
fast deep learning system using GPU,” in Circuits and Systems
(ISCAS), 2014 IEEE International Symposium on. IEEE, 2014,
pp. 1552–1555.

[4] Ying Zhang and Saizheng Zhang, “Optimized deep learning
architectures with fast matrix operation kernels on parallel plat-
form,” in Tools with Artificial Intelligence (ICTAI), 2013 IEEE
25th International Conference on. IEEE, 2013, pp. 71–78.

[5] NVIDIA, “GeForce GTX TITAN specifica-
tions,” available: http://www.geforce.com/
hardware/desktop-gpus/geforce-gtx-titan/
specifications, [Online; accessed 25-Sep-2015].

[6] Clément Farabet, Berin Martini, Polina Akselrod, Selçuk Ta-
lay, Yann LeCun, and Eugenio Culurciello, “Hardware accel-
erated convolutional neural networks for synthetic vision sys-
tems,” in Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on. IEEE, 2010, pp. 257–260.

[7] Jonghong Kim, Kyuyeon Hwang, and Wonyong Sung, “X1000
real-time phoneme recognition VLSI using feed-forward deep
neural networks,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2014 IEEE International Conference on. IEEE,
2014, pp. 7510–7514.

[8] Janardan Misra and Indranil Saha, “Artificial neural networks
in hardware: A survey of two decades of progress,” Neurocom-
puting, vol. 74, no. 1, pp. 239–255, 2010.

[9] Emile Fiesler, Amar Choudry, and H John Caulfield, “Weight
discretization paradigm for optical neural networks,” in The
Hague’90, 12-16 April. International Society for Optics and
Photonics, 1990, pp. 164–173.

[10] Perry Moerland and Emile Fiesler, “Neural network adapta-
tions to hardware implementations,” Tech. Rep., IDIAP, 1997.

[11] Chuan Zhang Tang and Hon Keung Kwan, “Multilayer feed-
forward neural networks with single powers-of-two weights,”
Signal Processing, IEEE Transactions on, vol. 41, no. 8, pp.
2724–2727, 1993.

[12] Song Han, Jeff Pool, John Tran, and William Dally, “Learning
both weights and connections for efficient neural network,” in
Advances in Neural Information Processing Systems, 2015, pp.
1135–1143.

[13] Dong Yu, Frank Seide, Gang Li, and Li Deng, “Exploit-
ing sparseness in deep neural networks for large vocabulary
speech recognition,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2012 IEEE International Conference on. IEEE,
2012, pp. 4409–4412.

[14] Kyuyeon Hwang and Wonyong Sung, “Fixed-point feedfor-
ward deep neural network design using weights +1, 0, and -1,”
in Signal Processing Systems (SiPS), 2014 IEEE Workshop on.
IEEE, 2014, pp. 1–6.

[15] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung, “Fixed
point optimization of deep convolutional neural networks for
object recognition,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on. IEEE,
2015, pp. 1131–1135.

[16] MT Tommiska, “Efficient digital implementation of the sig-
moid function for reprogrammable logic,” in Computers and
Digital Techniques, IEE Proceedings-. IET, 2003, vol. 150, pp.
403–411.

[17] Abdel-rahman Mohamed, George E Dahl, and Geoffrey Hin-
ton, “Acoustic modeling using deep belief networks,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol.
20, no. 1, pp. 14–22, 2012.

1015

