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ABSTRACT

In this paper, low-complexity multiple-input multiple-output
(MIMO) subspace detection schemes are studied, which decompose
a channel into multiple decoupled streams to be detected disjointly.
Existing schemes require a number of matrix decomposition oper-
ations equal to the number of detected streams, which is compu-
tationally complex, especially in high-order MIMO systems. We
propose two computationally efficient detection algorithms, based
on a preprocessing stage that consists of special layer ordering,
followed by permutation-robust QR decomposition (QRD) and el-
ementary matrix operations. The algorithms are illustrated in the
context of a 4-layer MIMO system, and their complexity is studied.
Simulations demonstrate that using the proposed scheme, the QRD
overhead is reduced by almost 50% for very high order MIMO,
without incurring any performance degradation.

Index Terms— MIMO systems, subspace detection, QR de-
composition, column permutation

1. INTRODUCTION

Multiple-input multiple-output (MIMO) antenna systems are a key
enabling technology in current and future wireless communica-
tion standards to increase spectral efficiency [1]. At the receiver
side, different detection schemes provide different performance-
complexity tradeoffs. At one end we have the linear detectors, such
as zero forcing (ZF) and minimum mean square error (MMSE) [2],
which are least-complex but least-efficient, and at the other end we
have the most-complex optimal maximum likelihood (ML) detec-
tor. In between, many suboptimal detectors that offer complexity-
performance tradeoffs exist, such as the sphere decoder (SD) and its
variants [3–7].

An important MIMO detection class of algorithms that offers a
good performance, and a complexity that only increases linearly with
the number of transmit antennas, is subspace detection. Subspace
detection consists of decomposing an effective channel matrix into
lower order subchannels, to reduce the number of jointly detected
streams. One way to decompose a channel matrix is by using ge-
ometric mean decomposition (GMD) [8–10], which can uniformly
decomposes a channel into identical parallel subchannels. How-
ever, several subchannels are allowed to overlap by using QR de-
composition (QRD) instead [11], which can result in additional di-
versity when less reliable data streams are put in multiple subchan-
nel detection sets. The popular layered orthogonal lattice detector
(LORD) [12] can be viewed as a special class of subspace detectors.

In [13,14], a comprehensive study on MIMO subspace detection
was conducted, and a generic detector was proposed, that jointly
detects subsets of decoupled streams, by transforming the channel

matrix into a generalized elementary structure, through QL decom-
position followed by elementary matrix operations. However, even
when the subsets only include single streams, this approach requires
a computationally intensive overhead of matrix decompositions in
its preprocessing stage, which gets worse with higher order MIMO
systems. In this paper, we build on the work in [13,14], and propose
two detection algorithms that can reduce this overhead.

Regarding notations, bold upper case, bold lower case, and
lower case letters correspond to matrices, vectors, and scalars, re-
spectively. Scalar and vector norms are represented by |·| and ‖·‖,
respectively. E[·], (·)T , (·)∗, (·)−1, and IM stand for the expected
value, transpose, conjugate transpose, matrix inverse, and identity
matrix of size M , respectively.

2. SYSTEM MODEL

We consider a MIMO system with N transmit antennas and M ≥ N
receive antennas. The received complex symbol vector is repre-
sented as:

y = Hx+ n (1)

with y ∈ CM×1 being the received complex vector, H ∈ CM×N the
spacially multiplexed complex channel matrix, x ∈ CN×1 the trans-
mitted symbol vector, and n ∈ CM×1 the complex additive white
Gaussian noise vector with zero mean and variance σ2

n (E[nn∗] =
σ2
nIM ). Each symbol xn belongs to a normalized complex con-

stellation Xn of size Qn = 2qn , thus x = [x1x2 . . . xN ]T ∈ X =
X1 × . . . × XN and E[x∗n · xn] = 1. The noise variance is defined
in terms of the signal to noise ration (SNR) as σ2

n=(N/SNR). The
bit representation of a symbol is a coded bit-interleaved sequence
bn = (bn,1, bn,2, . . . , bn,qn).

ML MIMO detection consists of exhaustively searching a lattice
X to find a symbol vector that minimizes the Euclidean distance
metric:

dML = min
x∈X

‖y −Hx‖2 (2)

The unscaled log-likelihood ratio (LLR) of bit bn,k, generated by the
soft-output ML detector, is calculated as:

λML
n,k = min

x∈X (0)
n,k

d(x)− min
x∈X (1)

n,k

d(x) (3)

where n = 1, . . . , N and k = 1, . . . , qn. The sets X (0)
n,k =

x ∈ X : bn,k=0 and X (1)
n,k = x ∈ X : bn,k=1 correspond to sub-

sets of symbol vectors in X , having in the corresponding kth bit
of the nth symbol a value of 0 and 1, respectively. ML detection
requires computing

∏N
n=1 Qn distance metrics to achieve optimum

performance.
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Fig. 1. QRD-based 4x4 channel matrix structures

3. SINGLE-STREAM SUBSPACE DETECTION

3.1. Generic WR Decomposition

The first step in subspace detection is channel matrix decomposi-
tion. Although the popular approach [12] is to undergo QRD, that
results in an unpunctured upper triangular matrix as shown in Fig.
1(a), in what follows we consider a more powerful WR decompo-
sition (WRD) scheme that punctures the red-marked entries above
the diagonal. We consider N =M , and aim at transforming H into
a punctured upper triangular matrix (UTM) R = [uij ] ∈ CN×N

with uii ∈ R+, as shown in Fig. 1(b), through a matrix W =
[w1w2 . . .wN ] ∈ CN×N , such that W∗H = R. We assume
H = [h1h2 . . .hN ] to have a full column rank. Setting W =
(H∗H)−1H∗ to be the left Moore-Penrose pseudo-inverse of H re-
sults in R = IN , and choosing W to be an orthonormal basis of the
column space of H, transforms it into an unpunctured UTM, with
W being unitary (QRD). In general, if R is punctured, then W is
non-unitary. However, if we impose the condition on the column
vectors of W to have unit length, i.e., w∗nwn=1 for n=1, . . . , N ,
the transformed noise vector is guaranteed to maintain an unaltered
covariance matrix (E[W∗nn∗W] = σ2

nIN ).
Let P=H(H∗H)−1H∗ be the orthogonal projection onto the

column space of H, and P⊥ = I − H(H∗H)−1H∗ be the or-
thogonal projection onto the left nullspace of H. Let HI be the
submatrix formed by the columns of H whose index n ∈ I (if
I = 1, 3, then HI = [h1h3]). Denote by In the column index
set of the entries in the nth row of H to be zeroed out, and define
w̃n = P⊥Inhn, where:

P⊥In = IN −HIn(H
∗
InHIn)

−1H∗In (4)

and HIn ={hm |m∈In}. The normalized vector is derived as w=

w̃n/ ‖w̃n‖with ‖w̃n‖=
√

h∗nP⊥Inhn. Let D = [dn]∈R+ be a di-

agonal matrix whose entries are given by dn=1/
√

h∗nP⊥Inhn, n=

1, . . . , N . The matrix that would zero out the entries in the rows of
H at column positions given in In is:

W∗ = D

⎡
⎢⎢⎢⎣
h∗1P

⊥
I1

h∗2P
⊥
I2

...

h∗NP⊥IN

⎤
⎥⎥⎥⎦ (5)

For example, in a 4×4 MIMO system, choosing the puncturing
sets as I1 = 2, 3, I2 = 1, 3, I3 = 1, 2, and I4 = 1, 2, 3, results in a
punctured UTM R as follows:

W∗H = D

⎡
⎢⎢⎣

h∗1P
⊥
2,3

h∗2P
⊥
1,3

h∗3P
⊥
1,2

h∗4P
⊥
1,2,3

⎤
⎥⎥⎦H =

⎡
⎢⎣
× ×

× ×
× ×

×

⎤
⎥⎦ = R (6)

3.2. Detection Algorithm

To generate soft-output LLRs for all layers, the N streams are decou-
pled, one at a time in N steps, by cyclically shifting the columns of

H and generating the punctured UTMs, as shown in Fig. 1(b-e). We
call this reference algorithm cyclical subspace detection (CYSD).
Each permuted H at step t is WR-decomposed into W(t) and R(t).
For simplicity, we assumeXn =M for all n. We first partition ỹ(t),
R(t), and x as:

ỹ(t) =

[
ỹ
(t)
1

ỹ
(t)
2

]
, R(t) =

[
A(t) b(t)

0 c(t)

]
, x =

[
x1

x2

]
(7)

where ỹ
(t)
1 ∈ C(N−1)×1, ỹ

(t)
2 ∈ C1×1, A(t) ∈ R(N−1)×(N−1),

b(t) ∈ C(N−1)×1, c(t) ∈ R1×1, x1 ∈ MN−1, and x2 ∈ M. Then
the symbol vector with minimum distance for a structure t is:

xWR
(t) = argmin

x∈X

∥∥∥ỹ(t)−R(t)x
∥∥∥2

(8)

= argmin
x2∈M

(∥∥∥ỹ(t)
2 −c(t)x2

∥∥∥2

+
∥∥∥ỹ(t)

1 −A(t)x̂1−b(t)x2

∥∥∥2
)

(9)

where x̂1 = �(ỹ(t)
1 −b(t)x2)/A

(t)�MN−1 is the sliced output. Since

A(t) is a diagonal matrix, the slicing is applied to individual ele-

ments of the vector ỹ
(t)
1 over the constellation M. In order to gen-

erate soft outputs, we compute two distance metrics defined as:

uWR
n,k,t = argmin

x∈X0
n,k

∥∥∥ỹ(t) −R(t)x
∥∥∥2

(10)

vWR
n,k,t = argmin

x∈X1
n,k

∥∥∥ỹ(t) −R(t)x
∥∥∥2

(11)

which can be expanded as in equation (8), and calculate the LLRs
as:

ΛWR
n,k,t =

∥∥∥ỹ(t) −R(t)uWR
n,k,t

∥∥∥2

−
∥∥∥ỹ(t) −R(t)vWR

n,k,t

∥∥∥2

(12)

for n = 1, . . . , N , k = 1, . . . , log2 |M|, and t = 1, . . . , N .
Note that tighter LLRs can be computed by tracking global

minimum distances rather than just minimizing over the per stream
LLRs. Moreover, a multi-stream enumeration set can be exhaus-
tively searched, where streams can be included in multiple detection
sets to enhance performance.

4. PROPOSED DETECTION ALGORITHMS

4.1. Single-Permutation Subspace Detection

When cyclically shifting the columns of H, the number of WRD
operations required is equal to the number of layers to be detected,
which is a significant computational burden that forms a bottleneck
in high order MIMO. An alternative minimal swapping operation
can reduce this computational overhead (Sec. 5). For example, in the
case of 4× 4 MIMO, if we want to compute the LLRs of the bits on
layer 2, we can swap h2 with h4, and use the matrix decomposition
of Fig. 1(b). We represent this swapping operation by a permutation:

π(t)(i) =

⎧⎨
⎩

N if i = t
t if i = N
i otherwise

(13)

for t=1, . . . , N and i=1, . . . , N . The remainder of the derivation,
equations (7) to (12), remains intact. We call this algorithm single-
permutation subspace detection (SPSD).
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4.2. Pairwise Subspace Detection

Another approach, which we will later argue to be of a practical in-
terest, is what we call pairwise subspace detection (PWSD). This
approach consists of lumping the channel columns in pairs (assum-
ing N even), and handling each pair of layers at a time. First, the
pair of interest is swapped with the rightmost two columns. Then,
the columns of the pair get swapped so that each can be at posi-
tion i = N . For example, in the case of 4×4 MIMO, the 4 per-
muted channels can be H1 = [h3h4h1h2], H2 = [h3h4h2h1],
H3 = [h1h2h3h4], and H4 = [h1h2h4h3]. After each of the N
permutations, the permuted channel is decomposed, and the LLRs
for the corresponding layer are computed (equations (7) to (12)).

5. EFFICIENT ARCHITECTURE

The brute force approach for computing W involves extensive ma-
trix inversion, which is computationally expensive, and prone to
numerical error when implemented with finite precision. However,
there exist an alternative efficient scheme [14] to determine W,
which consists of QRD followed by elementary matrix operations.

5.1. Permutation-Robust Reduced-Complexity QRD

The QRD decomposes H into a unitary matrix Q = [q1q2 . . .qN ]
and an upper triangular matrix R = [rij ]N×N with real and pos-
itive diagonal elements (H = QR). This can be computed us-
ing Givens rotation (GR), Gram-Schmidt (GS) orthogonalization, or
Householder transformation (HT) [15]. While the hardware imple-
mentation of HT is very complex, GR reduces the hardware area, but
at the expence of longer clock latency. The classical GS algorithm
allows a memory efficient implementation due to its inherent paral-
lelism, resulting in better regularity in data flow and a potential for
better hardware-efficiency, however, due to fixed-precision compu-
tation and round off errors, it can not guarantee the orthogonality of
Q. This limitation was overcome by the numerically superior Mod-
ified Gram-Schmidt (MGS) algorithm.

The MGS-based QRD of H is illustrated in Fig. 2. The algo-
rithm consists of two main parts. In the first part, the diagonal ele-
ments of R and the columns of Q are computed. In the second part,
the non-diagonal elements of R are computed and the columns of H
are updated. Considering a 4 × 4 complex matrix, in the first part
of the first iteration, the norm of h1 is assigned to r11, and q1 is
calculated as q1 = h1/r11. Then, in the second part r12 , r13 , and
r14 are calculated using q1, h2, h3, and h4 follows:

r1j = qT
1 hj 2 ≤ j ≤ 4 (14)

and H is updated by setting its first column to zero and subtracting
from the others the length of the projection of q1 on them, i.e.,

hj = hj − q1r1j 2 ≤ j ≤ 4 (15)

This procedure is repeated with one less column every new iteration.
Moreover, since in our proposed detection algorithms the H(t)

matrices are only one swap operation away, further simplifications
can be introduced. In fact, when computing the QRD of a matrix,
which is derived from another matrix, of known decomposition, by
some column permutations, computational savings can be achieved.
A part of the decomposition result remains unaltered under specific
permutations. For example, assume as shown in Fig. 3, columns 3
and 4 in H (in blue) were permuted. The first two columns of Q and
R (in red) depend only on the first two columns of H, and hence
there is no need to recompute them.

1: procedure MGS-QRD(H)
2: k ← 1;
3: for k = 1 : N do
4: rkk ←

√
h∗khk

5: qk ← hk/rkk
6: j ← k + 1
7: for j = 1 : N do
8: rkj ← qT

k hj

9: hj ← hj − qkrkj
10: end for
11: end for
12: end procedure

Fig. 2. MGS QRD Algorithm
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Fig. 3. QRD Savings Under Column Permutations

5.2. Matrix Puncturing

Assume that H is QR-decomposed and we have Q∗1H = R1. Ob-
viously, q∗NqN = 1 and q∗Nhm = 0 for all m = 1, . . . , N −1.
Hence, wN = qN . Now consider row 1< n≤ N of R1, and as-
sume the mth entry rnm, m>n, is to be nulled. We have q∗nhm =
rnm ∈ C and q∗mhm = rmm ∈ R+, from which it follows that
(q∗n − q∗m

rnm
rmm

)hm = 0. Therefore, the equations:

qn = qn − qmr∗nm/rmm (16)

rnj = rnj − rmjrnm/rmm, for j = m, . . . , N (17)

puncture the required entry and update Q1 accordingly. These oper-
ations are repeated for all other entries m>n to be punctured in row
n. Finally, qn is normalized to have unit length, and the non-zero
entries in row n of R1 are updated:

rnj = rnj/ ‖qn‖ , for j = n, . . . , N (18)

qn = qn/ ‖qn‖ (19)

The operations in (16)-(17) followed by the normalization steps (18)-
(19) are repeated for all rows n where puncturing is required. The
resulting Q1 is W, and R1 is the desired UTM R.

In matrix form, we can write (16)-(17) using elementary matri-
ces Em = [enj ], 1 ≤ m ≤ N , which differ from IN by a single
elementary row operation, defined as follows:

enj =

⎧⎨
⎩

1 if j = n
−rnm/rmm if j=m, j ∈ In
0 otherwise

(20)

The product of these elementary matrices forms the unscaled
matrices R2=(En . . .E1)R1 and Q∗2=(E∗n . . .E∗1)Q

∗
1. The scal-

ing operations (18)-(19) can be written using the diagonal matrix
D = [dn] ∈ R+, where dn = 1/

√
[Q∗1Q2]nn and [·]nn denotes

the nth diagonal element. The desired (scaled) matrices are given by
W∗ = DQ∗2 and R = DR2.

Unlike QRD, there is no permutation-robust implementation for
puncturing. The punctured elements are in the upper rows, affecting
the leftmost columns of Q. We still call the overall decomposition a
permutation-robust WRD (PR-WRD).
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Table 1. Computational Savings in Proposed Schemes
Permutations Redundant Saved

SPSD

1: h1h2h3h4 none none

2: h1h2h4h3 q1, q2, r11, r12 , r22 88 RML+40 RAD

3: h1h4h3h2 q1 r11 28 RML+8 RAD

4: h4h2h3h1 none none

PWSD

1: h3h4h1h2 none none

2: h3h4h2h1 q1, q2, r11, r12 , r22 88 RML+40 RAD

3: h1h2h3h4 none none

4: h1h2h4h3 q1, q2, r11, r12 , r22 88 RML+40 RAD

5.3. Channel Matrix Augmentation

For detection, the product W∗y must also be formed. This can
be efficiently computed by first right-augmenting y to H, and then
performing QRD on the augmented matrix to form Q̃R̃ = [H|y].
When carrying out the orthogonalization procedure, the same oper-
ations applied to the columns of H are applied to the augmented
column. This results in Q̃ = [Q|0N×1], with R̃ = [R|ỹ], where
H = QR and ỹ = Q∗y. Consequently, ỹ is generated as a by-
product. Then, carrying out the operations to puncture a given entry,
these operations are also applied on the rightmost column of R̃.

6. COMPLEXITY ANALYSIS

Table 1 summarizes the redundant QRD computations that can be
saved in the efficient implementation, depending on the permutations
and their order, for a 4 × 4 MIMO system. Note that this setup
of permutations and their order is not unique, as other setups can
result in the same savings. We analyze the complexity in terms of
floating-point operations (flops) based on real multiplication (RML)
and addition (RAD). Real division and square-root operations are
assumed equivalent to a RML. Also, complex multiplication requires
4 RML and 2 RAD, while complex addition requires 2 RAD. The
complete QRD requires a total of 304 RML and 176 RAD, and the
savings in the permutation robust QRD are 88 RML and 40 RAD.

The reference CYSD with cyclic permutations does not allow
further savings, since all column positions are altered from one per-
mutation to another. However, parallelism is an inherent feature in
it, where the process on each layer can run on a separate core. If we
discard this parallelism, and use a pipelined architecture, the decom-
position output from one layer can be fed to the subsequent layer, al-
lowing computational savings. A two-stage architecture for PWSD
is shown in Fig. 4. The first and third channel permutations can exe-
cute in parallel, using the efficient implementation of Sec. 5, but with
no redundant computations to save. The LLRs of their correspond-
ing layers are sent to a buffer, and the WRD output is passed to the
next stage, to assist the WRD of the second and fourth permutations,
respectively. A PR-WRD is thus applied in the second stage, making
use of previous decompositions.

For simplicity, the proposed algorithms were illustrated for 4×4
MIMO systems. However, their impact is better achieved in higher
order systems, 16× 16 and 32× 32 MIMO for example. With such
systems, the total preprocessing QRD overhead can be reduced to
almost 50%, since the non-redundant computations in the second
stage will only correspond to a slice of 2 columns. Moreover, these
savings are more profound with LORD detectors, where the matrix
preprocessing consists of QRD only.

y
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Efficient WRD

LLRs

Fig. 4. Architecture for a 4× 4 MIMO PWSD

7. SIMULATION RESULTS

The implementation followed the system model of Sec. 2. Turbo
coding/decoding is used, with a code rate of 1/2 and 8 decoding it-
erations. Moreover, we considered a zero-mean complex Gaussian
circularly symmetric channel, that is independent and identically dis-
tributed from time to time, with unit variance, which corresponds to
a case of rich scattering.

Figure 5 shows the bit error rate (BER) performance of the two
proposed detection approaches, compared to that of CYSD, and the
linear ZF detector. Note that the exhaustive ML detector is not
shown in the results, since it has a prohibitive complexity. The
PWSD and SPSD plots coincided with the reference subspace de-
tector, which means that the savings came at no performance degra-
dation cost. Moreover, the gap between the subspace detectors and
ZF is around 3 dB, which is significant. Note that if the proposed
algorithms are combined with layer ordering techniques, we could
achieve both, complexity savings and performance enhancement.

7 8 9 10 11 12

10−5

10−4

10−3

10−2

10−1

SNR−dB

B
E
R

CYSD
SPSD
PWSD
ZF

Fig. 5. BER performance of MIMO detectors with 16QAM

8. CONCLUSION

In this paper, two low-complexity MIMO subspace detection algo-
rithms have been proposed and tested in a 4×4 MIMO scenario. It
has been shown that with no performance degradation cost, subspace
detection can be efficiently implemented. The proposed implemen-
tation avoids matrix inversion operations, and employs a number of
permutation-robust matrix decomposition techniques. A two-stage
architecture has been proposed, which allows the significant reduc-
tion in QRD overhead (almost 50% in very high order MIMO).
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