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ABSTRACT

Polar coding is a new coding scheme that asymptotically
achieves the capacity of several communication channels.
Polar codes can be decoded with a successive cancellation
(SC) decoder. In terms of hardware implementation, archi-
tectural performance of SC decoders is limited by the memory
complexity. In this paper, two complementary methods are
proposed to reduce the memory footprint of current state-of-
the-art SC decoders. These methods must also applicable to
SC-List decoders. The impacts the decoding performance
in a rather negligible manner (<0.02dB), as shown by per-
formed simulations. The association of both methods allows
a reduction of 16 ∼35% of the memory complexity for SC
decoders depending on their quantization format.

Index Terms— Error-correcting codes, polar codes,
successive-cancellation decoding, hardware implementation

1. INTRODUCTION

Polar codes (PC) constitute a family of error correction codes
that asymptotically reach the capacity of various communica-
tion channels [1]. The associated decoder is the successive
cancellation (SC) decoder. Several SC decoder architectures
were proposed in the literature to improve the throughput and
to reduce the computational complexity [2–5]. In [5], an SC
decoder for a size N = 220 was implemented on an FPGA
device. This decoder only uses 2% of the computation re-
sources while consuming 72% of the available memory. It
demonstrates the existing asymmetry between memory and
computation complexities in current SC decoders. ASIC re-
sults in [6] lead to the same conclusion: 90% of the silicon
area is due to the memory. In this paper, two memory op-
timization methods are proposed. The first method suggests
to recalculate half of the Log-Likelihood Ratios (LLRs) in-
stead of storing them into the memory. It reduces the channel
memory complexity without affecting the FER decoding per-
formance. The second method reduces the dynamic range of
internal LLRs. It induces a negligible decoding performance
loss (<0.02dB). The combination of the two methods reduces
the memory complexity by 16 ∼ 35%. These methods could
be applied to other Polar codes decoding algorithms that suf-
fer from the same drawbacks e.g. list decoding [7, 8].
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Fig. 1. Architecture of SC decoder [5] with N = 16 et P = 1

In the remainder of the paper, the architecture of a state
of the art SC decoder is presented in Section 2. Then, the
two proposed memory reduction techniques are successively
presented in Sections 3 and 4. The improvement in terms
of memory complexity is then estimated on state of the art
architectures in Section 5.

2. STATE-OF-THE-ART SC DECODER
ARCHITECTURE

Figure 1 depicts the simplified architecture of a state-of-the-
art semi-parallel SC decoder as it was proposed in [3], and
then improved in [5]. Without loss of generality, and for the
sake of clarity, a small code length (N = 16) and a paral-
lelism level of one (P = 1) were selected. For a size N
and a parallelism level P , the SC decoder consists of the fol-
lowing elements: (i) a channel buffer storing the input LLRs
into packets of P LLRs; (ii) a channel memory MC storing
data coming from the channel buffer. MC is divided into
two banks, each including N

2P addresses. A total of P QC-
bits LLRs are stored in each address; (iii) an internal mem-
ory MI storing intermediate LLR values. MI is divided into
two banks each including N

2P addresses. Internal LLRs are
quantized with QI = (QC + ∆) bits; (iv) a processing unit
(PU) which includes P processing elements (PE); (v) a par-
tial sum update unit (PSUU), whose complexity grows only
with P [5]; and (vi) a partial sum memory MS of N bits
which stores PSUU results.
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Fig. 2. SC decoding on a binary tree

It was shown in [3] that even with a relatively low P value
(P ≈ 64), the decoder throughput is hardly affected. In terms
of complexity, the area consumed by the channel buffer, the
PU and the PSUU grows linearly with P and is independent
of N . As a consequence, the decoder total area is dominated
by the memory complexity which grows linearly with N as
shown in [5]. The memory footprint of an SC decoder can be
calculated using Equation 1. A(Mx) is the memory footprint
of the memory Mx in bits. MR represents the miscellaneous
memories that are used for buffering, storing the frozen bits,
etc. SinceA(MR) is hard to estimate and often negligible, we
will focus our analysis on reducing A0 = A′0 − A(MP ). In
order to have a fair estimation of the memory reduction, A′0
will be considered in the experimental results section.

A′0 = A(MC) +A(MI) +A(MS) +A(MR) (1)
A0 = QC ×N + (QC + ∆)×N +N (2)

The SC decoding process consists of five phases. In Phase
φ0: N channel LLRs (Ci) are shifted in one by one. The
channel buffer packs P consecutive LLRs and then send them
in parallel to MC . A total of N/P packets of P ×QC bits are
sent to MC . In Phase φ1: f functions are computed based on
the LLRs read from MC . The results are then stored in the
internal memory MI . In Phase φ2: a succession of f and g
functions are computed based on LLRs (Li) read from MI .
The results are stored back into MI . In the meantime, partial
sums are updated and stored in MS . In Phase φ3: g function
are computed based on the LLRs read from MC and partial
sums read fromMS . Results are stored inMI . In Phase φ4: a
succession of f and g functions are computed based on LLRs
stored in MI . The results are stored in this same memory.
At the end of this phase, the codeword is fully decoded. As
suggested in [2] f and g functions can be calculated such that:

f(a, b) = sgn(a).sgn(b).min(|a|, |b|) (3)
g(a, b, s) = (−1)sa+ b (4)
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Fig. 3. SC decoder with LLR recomputation and dynamic
reduction

3. RECOMPUTATION TECHNIQUE FOR THE
MEMORY REDUCTION

In the state-of-the-art SC decoder architecture, a large portion
of the memory is consumed by MC . In this paper, it is sug-
gested to modify the decoding process so that MC can be sig-
nificantly reduced. This first approach does not alter the de-
coder functionality and consequently guarantees that the de-
coding performance remains unchanged. The idea is the fol-
lowing: when the second half of the channel LLRs is shifted
in, instead of storing these incoming LLRs inMC , the f(a, b)
function is directly computed. The first operand (a) is read
from MC while the second operand (b) directly comes from
the channel buffer. This direct computation is possible be-
cause the f(a, b) function is applied on operands with indices
i and i + N/2: f(Ci, Ci+N/2), 0 ≤ i < N/2. The results
are then stored in MI . An additional bit (Γi) has to be calcu-
lated and stored in MI such that: Γi = 0 if |f(a, b)| = |a|,
Γi = 1 otherwise. In the mean time, another function h(a, b)
is computed and stored inMC such that h(a, b) = b if Γi = 0,
h(a, b) = a otherwise. In other words, the bit Γi indicates the
location of |a| and |b| in either MC or MI : Γi = 0 indicates
that |a| is stored in MI and |b| in MC . Γi = 1 means the
exact opposite. From the value stored in MI and MC one can
recalculate a and b required for the g function:

a = ka(Ci, Li) =

{
Ci if Γi = 1
sign(Ci).Li otherwise (5)

b = kb(Ci, Li) =

{
Ci if Γi = 0
sign(Ci).Li otherwise (6)

The corresponding architecture is depicted in Figure 3.
The decoding process is modified as follow: in Phase φ0:
N/2 channel LLRs (Ci) are shifted in one by one. The chan-
nel buffer stores P consecutive LLRs and then send them to
MC . A total ofN/2P packets of P×QC bits are sent toMC .
In Phase φ1: the functions f(Ci, Ci+N/2), h(Ci, Ci+N/2)
and the bit Γi are simultaneously computed for each operand
couple (Ci, Ci+N/2). Ci are read from MC while Ci+N/2

are directly shifted out by the channel buffer. f results are
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stored in MI while h results are memorized in MC . In Phase
φ2: same as standard SC decoding. In Phase φ3: operands a
and b of g function are first recalculated, and then the g func-
tion is computed : g(s, ka(Ci, Li), kb(Ci, Li)). The results
are stored in MI . Finally, in Phase φ4: same as standard SC
decoding.

This architecture modification saves the memorization of
N/2 channel LLRs. It represents an amount of QC × N/2
bits. However, this method requires the memorization of
an additional bit (Γi) for each of the N/2 computed val-
ues. The memory cost of this modified architecture is then
A1 = N/2(QC + 2(QC + ∆) + 3). The memory reduction
relative the state-of-the-art architecture [5] is expressed as:

r1 = 1− A1

A0
=

QC − 1

2× (2QC + ∆ + 1)
(7)

One should notice that the memory reduction is indepen-
dent of N and r1 > 0,∀QC ≥ 1.

This memory reduction comes at the cost of some extra
hardware resources for the computation of h, ka and kb. How-
ever, these functions can share some hardware with f anf g.
Moreover, since P << N , this overhead is negligible in com-
parison with the memory complexity as confirmed by experi-
mental results in section 6.

4. QUANTIZATION REDUCTION OF INTERNAL
LLRS

SC decoding can be represented graphically by the traversal
of a binary tree as shown in Figure 2. The phase φ0 corre-
sponds to the upper edge. Phases φ1 and φ3 are represented
by left and right edges of the root node respectively. Phases
φ2 and φ4 correspond to the recursive traversal of left and
right sub-trees of the root node. In standard implementations,
LLRs on the upper edge are quantized with QC bits while
LLRs on the other edges are quantized with QC + ∆ bits. A
higher dynamic range of internal LLRs is necessary because
the g function can actually generate LLRs with a larger dy-
namic range. One should however notice that the f function
does not require any increase in the quantization since it con-
sists in a minimum calculation. When the g function is ap-
plied on LLRs, the dynamic range has to be increased by 1
bit in order to avoid overflows. One can alternatively saturate
the result at the cost of some decoding performance lost. In
standard implementations, ∆ extra bits are used for internal
LLRs and a saturation is used to avoid overflows. If ∆ is suf-
ficiently large, the decoding performance loss can be found
negligible [9].

In this second optimization, instead of using ∆ extra bits
on all tree levels, we propose to gradually increase the dy-
namic range across tree levels. The following notation is used
to denote the proposed varying quantization scheme of the
LLRs in the memory: QC = x,QI = {y, z, t}. It means that
x bits are used for the channel LLRs (level 0 in the tree), y bits

for the internal LLRs at level 1, z bits for level 2, and t bits
for all the lower levels. In a standard architecture, the quan-
tization scheme can be denoted as QC = x,QI = {x + ∆}
because the same quantization is used for all internal LLRs.
We propose to gradually increase the quantization on the first
levels of the internal memory : QC = x,QI = {x + 1, x +
2, . . . , x + ∆}. This approach allows to reduce the memory
footprint on the first memory stages which are the most ex-
pensive. In terms of memory gain, a reduction of q bits at
level l in the tree saves qN

2l bits. For instance, removing 1 bit
at level 1 saves N/2 bits. The memory footprint A2 of this
method can be calculated using equations 8 and 9. Equation
10 expresses the memory reduction in comparison with the
standard architecture.

A2 = N × (QC + (QC + ∆− ε) + 1) (8)

ε =

∆−1∑
l=1

∆− l
2l

(9)

r2 = 1− A2

A0
(10)

This method does not degrade the decoding performance
in comparison with standard implementations ( i.e. the one
using QC = x,QI = {x + ∆}) because 1 extra bit is added
at each stage in order to avoid the saturation of LLRs. It is
however possible to gain extra memory by further reducing
the quantization with the following format: QC = x,QI =
{x, x + 1, . . . , x + ∆}. This scheme induces a potential sat-
uration of LLR at level 1. However, simulation results for
several code lengths and code rates show that this extra re-
duction only slightly affect decoding performance as shown
in Figure 4. The memory footprint of such an approach is:

A∗2 = N × (QC + (QC + ∆− ε∗) + 1) (11)

ε∗ =

∆∑
l=1

∆ + 1− l
2l

(12)

r∗2 = 1− A∗2
A0

(13)

5. MEMORY REDUCTION ESTIMATION

As shown in Figure 3, one can combine the two proposed
memory reduction techniques. The memory footprint of such
a decoder is A(1,2) = A0 + (A0 − A1) + (A0 − A2). Given
that r(1,2) = 1 − A(1,2)

A0
, one can show that r(1,2) = r1 + r2.

This is also true for A∗2: r∗(1,2) = r1 + r∗2
The memory reduction r(1,2) only depends on the quanti-

zation format (QC , QI ) and not on the code size N . Let us
suppose that both methods are applied. Assuming the format
QC = 6, QI = {6, 7, 8} is used, the memory reduction is
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Table 1. Estimation of proposed techniques on previously proposed SC decoders
Parameters

QI

Related works A1
QI

A2 A1,2
QI

A∗2 A∗1,2

n QC Ref LUTs FFs A′0 Extra
r′1 r′2 r′1,2

Extra
r∗
′

2

Extra
r∗
′

1,2(bits) LUTs LUTs LUTs
16 {5} {5} [9] 2866 1254 820992 +384 16% {5, 5} 0% 0% {5, 5} +512 16% +512 16%

17 {5} {5} [3] 221471 131764 1445632 +512 18% {5, 5} 0% 0% {5, 5} +512 18% +512 18%

17 {5} {5} [9] 2714 1263 1640192 +384 16% {5, 5} 0% 0% {5, 5} +512 16% +512 16%

20 {4} {6} [5] 5956 1366 13109248 +384 12% {5, 6} 4% 10% {4, 5, 6} +384 16% +384 22%

15 {4} {7} [5] 3927 1427 444672 +384 11% {5, 6, 7} 9% 15% {4, 5, 6, 7} +384 20% +384 26%

15 {4} {8} [5] 4141 1569 477696 +384 10% {5, 6, 7, 8} 14% 21% {4, 5, 6, 7, 8} +384 25% +384 31%

15 {4} {9} [5] 4673 1689 510720 +384 9% {5, 6, 7, 8, 9} 19% 26% {4, 5, 6, 7, 8, 9} +384 29% +384 35%

15 {5} {7} [5] 3731 1496 477440 +512 13% {6, 7} 3% 9% {5, 6, 7} +512 17% +512 22%

15 {5} {8} [9] 4161 1629 510464 +512 13% {6, 7, 8} 8% 13% {5, 6, 7, 8} +512 20% +512 26%

21 {5} {9} [9] 3571 2020 39853440 +512 10% {6, 7, 8, 9} 11% 16% {5, 6, 7, 8, 9} +512 21% +512 26%
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Fig. 4. FER curves for various N with QC = 6 bits.

r1,2 = 0.25. Figure 4 shows the associated decoding FER for
different N values and a code rate of 1

2 . No significant FER
degradation can be observed (<0.02dB). The same trend was
observed with the format QC = 4, QI = {4, 5, 6}. The asso-
ciated memory reduction is also 25%. It is possible to further
reduce the dynamic range on more tree levels, but this would
degrade the decoding FER for a limited impact on the mem-
ory reduction. Indeed, lower levels in the tree require smaller
memory space.

6. EXPERIMENTS

Table 1 shows estimations of the memory savings that the two
techniques bring to state-of-the-art decoders. In order to have
a fair estimation of the impact of the proposed techniques, the
following approach was used: It is assumed that the reported
numbers in [3] [5] [9] for each decoder represent the total
memory footprint, that is A′0. Since, we can compute A0, the
miscellaneous memory can then be calculated : A(MR) =
A′0−A0. The reduced memory footprint is then computed and
added toMR in order to have a fair comparison. For instance,
the reduction for the first reduction technique is r′1 = 1 −
(A1+A′0−A0)/A′0. The same approach was used to compute
r′2, r′1,2, r∗

′

2 and r∗
′

1,2. LUT overheads were estimated thanks
to logic synthesis of the h, ka and kb functions.

The combination of both techniques provides a memory
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Fig. 5. Memory reductions r1 and r2

reduction of 16% to 35% for a few hundreds of extra LUTs.
The gain brought by the recomputation technique depends on
the quantization format. The overhead however only depends
on QC because recomputation are performed only on the first
layer. The gain brought by the quantization reduction depends
on the difference between QC and QI

7. CONCLUSION

In this paper, we proposed two memory reduction methods for
the SC decoding of Polar Codes. Both methods can be com-
bined and lead to a non-negligible memory reduction (16%
to 35%). Future works include the hardware implementa-
tion of this decoder architecture. One could also apply these
both memory reduction methods on the list decoding algo-
rithm [7] and architectures [8] and the first one to software
SC decoders [10, 11].
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