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ABSTRACT

Alternate direction method of multipliers (ADMM) technique has re-
cently been proposed for LDPC decoding. Even though it improves
the error rate performance compared with traditional message pass-
ing (MP) techniques, it shows a higher computation complexity. In
this article, the ADMM decoding algorithm is first described. Then,
its computation complexity is analyzed. Finally, an optimized ver-
sion which benefits from the multi-core processors architecture as
well as the ADMM algorithm’s parallelism is presented. The opti-
mized version of the ADMM decoder can achieve up to 30 Mbps for
standardized LDPC codes on a laptop x86 processor. Therefore, it
could guide an efficient GPU implementation for real-time and high-
throughput decoding systems requiring correction performances be-
yond MP-Sum Product Algorithm (SPA) capabilities.

Index Terms— LDPC decoding, ADMM algorithm, muti-core,
software optimization, Forward Error Correction codes.

1. INTRODUCTION

Low Density Parity Check (LDPC) codes are a class of rediscovered
valuable linear block codes [1] [2]. They have gained widespread at-
tention in various fields of wireless communications and are adopted
as error-correcting codes by many digital communication standards
such as DVB-S2 [3], DVB-S2X [4], WiMAX [5], WiFi [6] and
WRAN [7]. Using linear programming (LP) optimizations, Feld-
man et al. in [8] proposed a novel algorithm for LDPC decoding.
They showed that the error correction performance of this LP based
decoder is comparable to and often better than the iterative MP de-
coding [9]. However, LP techniques are too complex in terms of
computations and memory requirements [9–12] to be applicable to
medium and long LDPC codes even with low-throughput require-
ment.

With the advance of the ADMM technique [13], a significant im-
provement towards LP LDPC decoding scalability and optimization
is possible. Barman et al. in [14] presented a two-slice characteriza-
tion for the parity polytope and developed an efficient Euclidean pro-
jection algorithm which is required for ADMM-based LP decoding.
Despite the fact that ADMM is distributed and has strong conver-
gence guarantees, current implementations of the ADMM-based LP
decoders do not meet throughput standard requirements [15] [16].
Actually, even though the algorithm’s complexity seems comparable
to the MP decoding approach, the projection on the parity polytope,
which is the convex hull of all the binary vectors with an even num-
ber of ones, still remains a huge time-consuming task even when
compared with atan function used by SPA decoding algorithm.

In this work, an analysis of the ADMM LDPC decoding algo-
rithm so as to identify the performance bottlenecks is presented.
Then, a novel software-optimized ADMM decoder for multi-core
platforms is described. Next, a study of the complexity repartition

among the decoder blocks is carried out. Through taking advantage
of the architectural features of the multi-core processors and the par-
allelism level identified during this study, the original software im-
plementation provided by [16] is speeded-up. The accelerated ver-
sion of the ADMM algorithm can achieve up to 30 Mbps for stan-
dardized LDPC codes. Its performance features excel those of the
first traditional LDPC decoders software implementations [17–21],
though they are still below the recent ones on multi-core platforms
[22–24]. This novel implementation paves the way for a real time
software implementation. Furthermore, the accelerated ADMM de-
coder’s performance has been simplified for study at high signal to
noise ratio values.

The remainder of the paper is organized as follows: in section
II, the formulation of LP decoding and its ADMM representation is
reviewed. It is compared with the traditional MP approaches. In sec-
tion III, a time profiling of the different blocks optimized is presented
and the parallelism levels of the algorithm and their application on
the target architecture to get software improvements are described.
In section IV, some performance results are provided.

2. THE ADMM ALGORITHM FOR LP-LDPC DECODING

A (dv, dc) binary LDPC code of block length N is described by
a parity check matrix H ∈ FM×N2 (M ≤ N) having dv ones
at each column and dc ones at each row. It can be represented
by its Tanner graph where the variable nodes (VN) are indexed by
I = {1, . . . , N} and the check nodes (CN) are indexed by J =
{1, . . . ,M}. The element Hij = 1 in H means that there is an
edge between the variable node vi and the check node cj . Let dvi
be the degree of the variable node vi and dcj be the degree of the
check node cj . Let Nv(i) = {j ∈ J /Hij = 1} the index of the set
of neighbors of variable node vi and Nc(j) = {i ∈ I/Hij = 1}
the index of the set of neighbors of check node cj . Once transmit-
ted over a noisy channel, the LP decoding is equivalent to solving a
linear program over a codeword polytope:

minimize γTx (1)

Stating that HxT = 0,

where γ is the vector of log-likelihoods.
The check polytope Pdcj is the convex hull of all binary vectors of
length dcj with an even number of ones. Barman et al. [14] demon-
strated that the LP decoding problem (1) can be reformulated in or-
der to fit the ADMM template given in [13]. Finally, the augmented
Lagrangian of the LP problem with scaled dual variable can be writ-
ten as:

Lµ(x, z, λ) = γTx+
µ

2

∑
j∈J

‖Tjx−zj+λj‖22−
µ

2

∑
j∈J

‖λj‖22, (2)
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Algorithm 1 Flooding based ADMM-l2 penalized algorithm.
1: Kernel 1: Initialization
2: for all j ∈ J , i ∈ Nc(j) do
3: (z

(0)
j )i = 0.5, (λ

(0)
j )i = 0, L

(0)
ji = 0.5

4: end for
5: for all k = 1→ (iter max) do
6: Kernel 2: Computation of messages V Ni → CNj
7: for all i ∈ I, j ∈ Nv(i) do
8: t

(k)
i =

∑
j∈Nv(i)

(L
(k−1)
ji )− γi

µ

9: L
(k)
ij = Π

[0,1]dv
( 1
dvi−2α

µ
(t

(k)
i − α

µ ))

10: end for
11: Kernel 3: Computation of messages CNj → V Ni
12: for all j ∈ J , i ∈ Nc(j) do
13: (z

(k)
j )i = ΠPdcj

(ρL
(k)
ij + (1− ρ)z(k−1)

j + λ
(k−1)
j )

14: (λ
(k)
j )i = λ

(k−1)
j + ρL

(k)
ij + (1− ρ)z(k−1)

j − z(k)j

15: L
(k)
ji = (z

(k)
j )i − (λ

(k)
j )i

16: end for
17: end for
18: Kernel 4: Hard decision from soft-values
19: for all i ∈ I do

20: ĉi =

[ ∑
(j∈Nv(i))

L
(k)
ji

]
> 0.5

21: end for

where µ > 0 is the penalty parameter, λ is the scaled dual variable.

An over-relaxation parameter ρ is added to the ADMM algo-
rithm in order to improve its convergence [15]. Besides, it is ob-
served that the ADMM-based LP decoder has worse error perfor-
mance than the MP decoder at low SNR values [25]. To address this
problem, Liu et al. proposed a penalized ADMM decoder which
adds a penalty term into the objective function of the LP formulation.
When l2 penalty terms are used, the objective function of problem
(1) is replaced with γTx − α‖x − 0.5‖22. α is a penalty parameter
that can be optimized in advance.

After simplifications, the ADMM-based decoding algorithm
with l2 penalty can be expressed in the form of an iterative MP
algorithm, as in Algorithm 1. Like other MP decoding algorithms,
this flooding based computation works out for the check updates
as well as for variable updates where all the nodes are computed
simultaneously. However, the amount of exchanged messages and
the VN and CN computation complexities are quite different. Sim-
ilar description of the flooding based LDPC decoding for Min-Sum
algorithm can be found in [24].

In Algorithm 1, Π[0,1]dv (a) is the Euclidean projection of the
vector a on [0, 1]dv while ΠPdcj

(b) is the Euclidean projection of
the vector b on the check polytope Pdcj . ADMM LP decoding has
proven its efficiency as an error correction approach [15]. Figure 1
shows the frame error rate of the ADMM decoder over an AWGN
channel for two WiMAX standardized LDPC codes with different
rates compared with the traditional SPA decoder. In these simu-
lations, the maximum number of iterations for all the decoders is
200 which provides good error performance [15]. The parameters
of the ADMM-l2 penalized decoder are obtained by the parameter
generator given in [26]. It can be seen that the ADMM-l2 penalized
decoder performs better than the optimal SPA decoder. For exam-
ple, at FER=10−5, the performance gain for the ADMM-l2 decoder
is 0.3 dB for the 1152 × 288 code. The performance gain for the
ADMM-l2 decoder is 0.5 dB for the 576× 288 code at FER=10−4.
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Fig. 1. FER comparison of ADMM-l2 penalized decoders with SPA
decoders on AWGN channel.

3. ALGORITHM MAPPING AND OPTIMIZATION

3.1. Target multi-core architecture

In this study, we focused mainly on developing an efficient imple-
mentation of the ADMM penalized decoding algorithm on multi-
core target architectures such as x86 processor. Indeed these pro-
cessors are designed essentially to support general purpose compu-
tations while providing parallel processing capabilities. Currently,
x86 processor cores provide two supplementary parallel program-
ing models: Single Instruction Multiple Data (SIMD) and Single
Instruction, Multiple Threads (SIMT). These programming models
enable high signal processing acceleration especially given the fact
that they are associated with the fast and large memory caches avail-
able in multi-core architectures. These architectures seem to be at
least as fast as GPU devices for LDPC decoding [24].

To reach the highest throughput performances, the ADMM pe-
nalized decoding algorihtm was first adapted to take advantage of
both SIMD and SIMT programming models. Then, the bottleneck
parts of the source code were restructured and optimized.

3.2. ADMM decoder profiling

Xishuo Liu, one of the authors of the first articles [14,25] on ADMM
for LDPC codes provides his source codes online [16] under open-
source license. His decoder description is not optimized for through-
put performances but acts as a functional demonstrator. The work
presented in this article initially took over his C++ ADMM decoder
implementation. Then it was slightly modified to include the latest
researches in the field [26] where the l2 penalization function intro-
duces different penalty parameters for variable nodes with different
degrees. It improves the decoding performances of the ADMM de-
coder compared with the SPA approach [25].

The ADMM decoding algorithm is MP-based. When compared
with the SPA decoding algorithm, the computation complexity of the
VNs and CNs seem to be higher due to the multiplications and divi-
sions in VNs and multiplications and projection in CNs. In order to
identify the hot spots in terms of computation complexity, a profil-
ing step of the application was done. Indeed, theoretical analysis is
complex for the ADMM decoder where some parts of the projection
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operation involved in CNs are control intensive processing.
Using the real time counter of the x86 target (RTSC instruction),

we measured the average number of clock cycles required to execute
kernel 2 and kernel 3 of Algorithm 1 for various SNR values. Re-
sults show that the CN kernel consumes over 80% of the execution
time. Different regular and irregular LDPC codes with various code
lengths as well as various check degrees ∈ {6, 7, 14, 15} were sim-
ulated to provide profiling statistics. Time breakdown seems to be
independent from these parameters. Moreover, additional experi-
mentations demonstrated that the SNR value has a negligible impact
on the execution time repartition.

The CN kernel (kernel 3 of Algorithm 1) is composed of two
main parts. The first part prepares the values for the projection ac-
cording to the VN to CN messages and updates the CN to VN mes-
sages after the projection. The computations involved are primarily
additions and multiplications. The second part of the CN kernel is
the Euclidean projection on the parity polytope. The projection al-
gorithm is fully detailed in [14] section 4. This projection computa-
tion is composed of arithmetic operations interleaved with sequential
control intensive sections. We carried out statistics about the execu-
tion time repartition in the CN kernel. Experimental results show
that the projection consumes about 60% of the CN execution time.
The complete description of the projection shows that on top of arith-
metic additions and multiplications, this algorithm makes use of two
sorting functions of 2dc values. Profiling statistics attest that the
percentage of the sorting processing cycles over the total projection
time is not less than 70%.

These execution time observations show that the current bottle-
neck of the ADMM decoder software implementation is the projec-
tion task and therefore, it has to be optimized. Since the data sorting
stages consume an important part of the projection time, a better sort
function has to be identified. Meanwhile, the ADMM decoder opti-
mization efficiency would only be reached if non-bottleneck parts of
the algorithms are also optimized (Amdahl’s law). In the next sec-
tion we explain the different optimizations that we have performed
to improve the algorithm mapping on multi-core architectures.

4. SOFTWARE OPTIMIZATIONS

4.1. Parallelism optimization

In this section, the implementation choices and the applied optimiza-
tions are explained in order to improve the ADMM software decod-
ing speed and reach significant throughputs on multi-core devices.

First, a set of traditional optimizations was applied. An adjust-
ment to simple precision floating point for both data and computa-
tions was performed to improve the processing efficiency without
impacting on the correction performance of the decoder. Subse-
quently, the code was restructured and the memory footprint was
minimized. The memory cost of the ADMM penalized decoder fi-
nally equals one of traditional SPA decoder (2×N + 2×M , with
M the number of exchanged messages). Then, a revamping of the
loops structures so as to bring out the flooding scheduling was done.

In addition, three typical parallelism levels were identified in
Algorithm 1 through taking advantage of the general purpose multi-
core processors features and the kernel computations were also man-
ually optimized using SIMD and SIMT features. Firstly, to perform
the variable nodes update computations (lines 7 to 10), each 8 VNs
are processed in parallel. This gathering enables full efficiency us-
ing all 8 processor calculation units at once. However, dv degree are
often lower than 8, thus ×8 acceleration can’t be always achieved.
Secondly, inside the CN computation (lines 13 to 15), the parallelism

is applied to get the necessary vector for the projection, to perform
the projection and to update the CN message. For each CN, dc cal-
culation units are assigned in parallel. For instance, when dc = 6, 6
out of 8 calculation units are assigned, leading to 75% of efficiency.
Thirdly, at the frame level computation, processing different frames
in parallel is equivalent to running multiple decoders simultaneously
by using a different number of threads offered by the processor. Ac-
cording to this analysis, we decided to take advantage of massively
parallel devices by computing a set of q frames in parallel using
OpenMP directives.

Finally, the set of dc parallel computations located in the pro-
jection task was optimized using the SIMD processing capability,
though a large part of the projection’s processing is sequential and
can not be SIMD optimized.

4.2. Sort profiling

The decoder profiling in section 3.2 underscores the need to decide
how best to reduce the complexity of the sort function used in the
projection algorithm. The idea is to find the fastest way to sort an
array of dc floating point values while keeping their original coordi-
nates (for a later reordering). As a starting point, we considered and
compared the sorting algorithms in the literature. First, sorting al-
gorithms were benchmarked by sorting only 6 float values. For each
algorithm, the average amount of processor clock cycles required for
the sort was measured using the RTSC instruction available in the
Core-i7 target. An example of measurements is shown on Figure 2
(a) which reports the average number of cycles of 5 sorting methods
when dc is equal to 6. Obviously, the direct call to the qsort library
function and the insertion methods are the slowest, followed by the
bubble sort and rank order sort. The network sorting with fast swap
seems to be the most efficient method.

Then, we extended these functions considering the sort of two
arrays, one for dc floats and another for their dc integer coordinates.
Average amount of clock cycles required by modified sorting algo-
rithm is provided in Figure 2 (b). Apparently, the rank order sort,
which doesn’t need any branch and stores data in registers before
sorting is the most efficient.

We have used these results, among others, as a basis and decided
to use the rank order approach to enhance the performance as much
as possible the projection function.

5. EXPERIMENTAL RESULTS

In this section, the performance of the optimized decoder for irregu-
lar standardized LDPC codes with different lengths, rates and degree
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Fig. 3. ADMM-l2 optimized decoder measured throughputs wrt the
number of threads (a) 2304× 1152 code (b) 576× 288 code.
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Fig. 4. Average number of iterations Vs throughput evolution (a)
2304× 1152 LDPC code (b) 576× 288 LDPC code.

distribution is illustrated. Then the decoding speed gain when com-
pared with the original ADMM decoder [16] on one core processor
target is shown. The evaluation platform employed is a MacBook
Pro computer that runs OS X 10.10. It is composed of an INTEL
Haswell Core-i74960HQ CPU. This processor runs at 2.6 GHz, with
6 MB of L3 cache memory and 16 GB of DDR3 running at 1600
MHz. It is composed of 4 Physical Cores (PC) and 4 Logical Cores
(LC) sharing the L3 cache memory while each of them has 256 KB
of unified L2 cache memory. Turbo-boost technology is switched
on. Therefore, the processor’s working clock frequency reaches 3.6
GHz when a single processor core is used and 3.4 GHz when the 4
PC and 4 LC cores are switched on.

The first experimentation set reported in Figure 3 provides the
throughput performance of the multi-threaded version of the decoder
when the number of processors switched on increases from 1 to 8.
The throughput reaches more than 30 Mbps when 8 decoders are ex-
ecuted. It meets the WiMax standard requirements for the 576×288
LDPC code as well as the WRAN standard requirements for the
2304 × 1152 LDPC code. It is important to notice that the aver-
age number of iterations required to decode frames decreases sub-
stantially when the SNR increases. As depicted by Figure 4, the
throughput increases linearly with the SNR value while the average
number of decoding iterations required for the decoder to converge
to a codeword decreases. For instance, at 1 dB, the average decoding
iteration number reaches 114 and 135 iterations for the 576 × 288
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Fig. 5. Speed up factor: fast decoder throughput Vs original decoder
on a single core processor for different LDPC codes.

and 2304 × 1152 LDPC codes respectively, while at 2 dB, it de-
creases considerably to 17 iterations.

The performance improvement in the decoding speed through
comparing the throughput of the original ADMM decoder with our
optimized version is shown in Figure 5. Four LDPC codes with dif-
ferent lengths and regularity are considered. A first observation is
that the longer code length, the more important the speeding factor
becomes. Another finding is that the higher the SNR value, the more
important the speeding factor gets. From this figure, we can also see
that there is a considerable decoding time reduction for the ultimate
multi-core version. For instance, the optimized decoder runs 5 to 7
times faster than the original one starting from 2.5 dB as SNR for
the long experimented codes. Lower speed-up factors are reached
for irregular codes where VN and CN kernels are more complex to
be optimized with the SIMD feature.

To the best of our knowledge, this study is the first implemen-
tation of an ADMM-LP decoder on multi-core architectures. The
throughput performance results, though lower than those of recent
LDPC decoders [22–24] (but not necessary against first implemen-
tations [17–21]), serve to strengthen the conclusion that the ADMM
decoder can compete with traditional LDPC decoders on multi pro-
cessors platforms, aside from having much better error correction
performance. Besides, this novel optimized decoder accelerates sim-
ulations to ease the study of algorithmic simplifications at high SNR
values.

6. CONCLUSION

In this paper, we described the iterative ADMM penalized algorithm
used for LP decoding of LDPC codes. This LDPC decoding algo-
rithm provides up to 0.5 dB better error correction than the MP-SPA
LDPC decoder for different LDPC codes. We optimized a software
implementation of the decoder to take advantage of SIMD and SIMT
processing features. Optimization choices are discussed and justi-
fied according to execution profiling figures. Experimentation re-
sults show that the optimized version performs considerably better,
in terms of decoding throughput, than the original version. It enables
to meet Wimax standard real time throughput requirements. This
achievement sheds light on a future multi processor implementation
as well as on an easier evaluation of potential algorithmic simplifi-
cations to reduce the computation complexity of the ADMM LP de-
coding. The decoder’s proposed implementation demonstrates that
ADMM LDPC decoding can be a viable candidate for high correc-
tion performance in Software Defined Radio systems.
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