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ABSTRACT

Polar codes are the first provably capacity-achieving forward
error correction codes. To improve decoder throughput, the
symbol-decision SC algorithm makes hard-decision for mul-
tiple bits at a time. In this paper, we prove that for polar
codes, the symbol-decision SC algorithm is better than the
bit-decision SC algorithm in terms of the frame error rate
(FER) performance because the symbol-decision SC algo-
rithm performs a local maximum likelihood decoding within
a symbol. Moreover, the bigger the symbol size, the better
the FER performance. Finally, simulation results over both
the additive white Gaussian noise channel and the binary era-
sure channel confirm our theoretical analysis.

Index Terms— Polar codes, successive cancellation, bit-
decision decoding, symbol-decision decoding

1. INTRODUCTION

Polar codes, a groundbreaking discovery by Arikan [1], prov-
ably achieve the symmetric capacity of discrete memoryless
channels with arbitrary input alphabet sizes [1,2]. Since their
debut, a lot of effort has been made to improve the error per-
formance of short polar codes. Although a sphere decod-
ing algorithm [3], stack sphere decoding algorithm [4] or a
Viterbi algorithm [5] can provide maximum likelihood (ML)
decoding of polar codes, they are considered infeasible due
to their high complexity. Compared with these ML decod-
ing algorithms, the successive cancellation (SC) [1] and SC
list (SCL) [6] decoding algorithms have a lower complexity
at the cost of sub-optimal performance. Another drawback
of the SC algorithm is its long decoding latency and low de-
coding throughput because the SC algorithm makes hard bit
decisions only one bit at a time. To reduce the decoding la-
tency and improve the throughput, parallel SC and SCL algo-
rithms were proposed in [7]. This idea of parallel processing
is extended in [8], where the SC decoder is transformed into
a concatenated decoder, where all the inner SC decoders are
carried out in parallel. Also, a multibit SCL decoder was pre-
sented in [9]. In our prior work [10, 11], we have proposed
a symbol-decision SC algorithm, which makes hard symbol
decisions one at a time. There is no theoretical analysis of
error performance in the literature that shows whether the al-

gorithms in [7–9] are superior or inferior to the SC and SCL
algorithms [1], referred to as the bit-decision SC algorithm
henceforth. Only numerical simulation results in [7] and [9]
were used to show that the proposed algorithms have no per-
formance loss compared with the bit-decision SC and SCL
algorithms, and error performance was not investigated in [8].

In this paper, besides numerical simulations, we prove
that in terms of frame error rate (FER) performance, the
symbol-decision SC algorithm is better than the bit-decision
SC algorithm. Moreover, the bigger the symbol size, the
better the FER performance. Finally, simulation results over
the additive white Gaussian noise (AWGN) channel and the
binary erasure channel (BEC) confirm our theoretical analy-
sis.

The rest of this paper is organized as follows. In Sec-
tion 2, polar codes are reviewed as well as the bit- and
symbol-decision SC algorithms. In Section 3, we prove
that the symbol-decision SC algorithm has a better FER per-
formance than the bit-decision SC algorithm. In this section,
we also show how to make use of future frozen bits within
a symbol by the symbol-decision SC algorithm. Numerical
simulation results are presented to confirm our theoretical
conclusion as well. Finally, some conclusions are provided in
Section 4.

2. BIT-DECISION AND SYMBOL-DECISION SC
ALGORITHMS FOR POLAR CODES

2.1. Polar codes

For simplicity, we denote (ua, ua+1, · · · , ub−1, ub) as ub
a; if

a > b, ub
a is regarded as void. For any index set A ⊆ I =

{1, 2, · · · , N}, uA = (ui : 0 < i ≤ N, i ∈ A) is the sub-
sequence of u = uN

1 restricted to A. The complement of A
in I is denoted as Ac.

Suppose N = 2n, for an (N,K) polar code, the data bit
sequence u = uN

1 is divided into two parts: a K-element part
uA which carries information bits, and uAc whose elements
(called frozen bits) are set to zero.

To generate the corresponding encoded bit sequence x =
xN
1 = uBNF⊗n, where BN is the N × N bit-reversal per-

mutation matrix, F = [ 1 0
1 1 ], and F⊗n is the n-th Kronecker

power of F [1].
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2.2. Bit-Decision SC Algorithm for Polar Codes

When x is transmitted, suppose the received word is y =
yN1 . The bit-decision SC algorithm [1] for an (N,K) polar
code estimates the data bit sequence u successively: for j =
1, 2, · · · , N , ûj = 0 if uj is a frozen bits, otherwise it is
estimated by ûj = argmax

uj∈{0,1}
Pr(y, ûj−1

1 |uj). Here, the bit-

decision SC algorithm makes hard bit decisions one bit at a
time.

2.3. Symbol-Decision SC Algorithm for Polar Codes

The M -bit1 parallel and symbol-decision SC algorithms [7,9–
11] make hard-decision for M bits instead of only one bit at
a time. For 0 ≤ j < N

M , the j-th symbol is estimated succes-
sively by ûjM+M

jM+1 = argmax
uAMj

∈{0,1}|AMj |

uAMc
j
∈{0}|AMc

j |

Pr(y, ûjM
1 |ujM+M

jM+1 ),

where IMj
def
= {jM + 1, jM + 2, · · · , jM + M} ⊆ I,

AMj
def
= IMj ∩A, AMc

j
def
= IMj ∩Ac, and |AMj | repre-

sents the cardinality of AMj . If M = N , the M -bit symbol-
decision SC algorithm is exactly an ML sequence decoding
algorithm.

3. PERFORMANCE ANALYSIS OF THE
SYMBOL-DECISION SC ALGORITHM

3.1. FER Analysis of the Symbol-Decision SC Decoding
Algorithm

To have a fair comparison, we assume the symbol-decision
decoding has the same bit sequence u as its bit-decision coun-
terpart. Without loss of generality, we consider two decoding
scenarios shown in Fig. 1. In both scenarios, an N -bit vector
is divided into N

M segments. Each segment has M bits. The
bit-decision SC and M -bit ML decoding algorithms are used
to decode each segment of scenarios (a) and (b), respectively.
A box means that a decision is made. From a segment to the
following segment, both scenarios use the same schedule –
the successive schedule. Then scenarios (a) and (b) exactly
correspond to the bit-decision SC and M -bit symbol-decision
SC algorithms, respectively. Note that when a different bit
sequence is used for both, all conclusions still apply.

Bits: 1 2 M

(a)

M+1 2M N-M+1 N

Bits: 1 2 M

(b)

M+1 2M N-M+1 N

Fig. 1. Decoding procedures of (a) a bit-decision SC algo-
rithm and (b) an M -bit symbol-decision SC algorithm.

1Although the symbol size M can be any integer no more than N , we
assume M |N for simplicity.

In terms of the FER performance, we have

Proposition 1. If all data sequences are independent and
equally likely, for an (N,K) polar code over any given chan-
nel, the FER of the bit-decision SC algorithm PrB(û

N
1 ̸= uN

1 )
and the FER of the M -bit symbol-decision SC algorithm
PrM(ûN

1 ̸= uN
1 ) satisfy:

PrM(ûN
1 ̸= uN

1 ) ≤ PrB(û
N
1 ̸= uN

1 ). (1)

Proof. Let us calculate the FERs of the two scenarios shown
in Fig. 1. Let p0 = PrSC(û

M
1 ̸= uM

1 ) and p′0 = PrML(û
M
1 ̸=

uM
1 ) denote the segment error rate of ûM

1 ̸= uM
1 by using the

SC and M -bit ML decoding algorithms, respectively. Sim-
ilarly, for i = 1, 2, · · · , N

M − 1, let pi = PrSC(û
iM+M
iM+1 ̸=

uiM+M
iM+1 |ûiM

1 = uiM
1 ) and p′i = PrML(û

iM+M
iM+1 ̸= uiM+M

iM+1 |ûiM
1 =

uiM
1 )(1 ≤ i < N

M ) represent the probabilities of that the i-th
segment is erroneously decoded by the SC and M -bit ML
decoding algorithms, respectively, provided that all previous
segments are correctly decoded.

Then we have the segment error probability Pr(ûM
1 ̸=

uM
1 ) =

∑
yN
1
Pr(ûM

1 ̸= uM
1 |yN1 )Pr(yN1 ). Since Pr(yN1 )

is independent of the decoding rule, to minimize Pr(ûM
1 ̸=

uM
1 ), we need to minimize Pr(ûM

1 ̸= uM
1 |yN1 ), i.e., to maxi-

mize Pr(ûM
1 = uM

1 |yN1 ).
Because

Pr(uM
1 |yN1 ) =

Pr(yN1 |uM
1 )Pr(uM

1 )

Pr(yN1 )
,

and uM
1 is a uniformly distributed random variable, the M -bit

ML decoder maximizes Pr(ûM
1 = uM

1 |yN1 ). Therefore, we
have

p0 ≥ p′0. (2)

For any 1 ≤ i < N
M , the segment error probability

Pr(ûiM+M
iM+1 ̸= uiM+M

iM+1 |ûiM
1 = uiM

1 ) =
∑

yN
1
Pr(ûiM+M

iM+1 ̸=
uiM+M
iM+1 |yN1 , ûiM

1 = uiM
1 )Pr(yN1 ). Hence, to minimize

Pr(ûiM+M
iM+1 ̸= uiM+M

iM+1 |ûiM
1 = uiM

1 ), Pr(ûiM+M
iM+1 = uiM+M

iM+1 |
yN1 , ûiM

1 = uiM
1 ) need to be maximized.

Because

Pr(uiM+M
iM+1 |yN1 , ûiM

1 = uiM
1 ) =

Pr(yN1 , ûiM
1 = uiM

1 |uiM+M
iM+1 )Pr(uiM+M

iM+1 )

Pr(yN1 , ûiM
1 = uiM

1 )
,

and uiM+M
iM+1 is a uniformly distributed random variable, the

M -bit ML decoder maximizes Pr(ûiM+M
iM+1 = uiM+M

iM+1 |yN1 , ûiM
1 =

uiM
1 ). Therefore, we also have

pi ≥ p′i for 1 ≤ i <
N

M
. (3)

For the bit-decision SC algorithm,

PrB(û
N
1 ̸= uN

1 ) = 1−
N
M −1∏
i=0

(1− pi).
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For the M -bit symbol-decision SC algorithm,

PrM(ûN
1 ̸= uN

1 ) = 1−
N
M −1∏
i=0

(1− p′i).

According to (2) and (3), we have

PrM(ûN
1 ̸= uN

1 ) ≤ PrB(û
N
1 ̸= uN

1 ).

Furthermore, we have

Proposition 2. If all data sequences are independent and
equally likely, for an (N,K) polar code over any given chan-
nel, the FER of an M -bit symbol-decision SC algorithm
PrM(ûN

1 ̸= uN
1 ) and the FER of a 2M -bit symbol-decision

SC algorithm Pr2M(ûN
1 ̸= uN

1 ) satisfy:

Pr2M(ûN
1 ̸= uN

1 ) ≤ PrM(ûN
1 ̸= uN

1 ). (4)

Bits: 1 M

(a)

M+1 2M NN-2M+1 N-M N-M+1

Bits: 1 M

(b)

M+1 2M NN-2M+1 N-M N-M+1

2M+1 3M 3M+1 4M

2M+1 3M 3M+1 4M

Fig. 2. Decoding procedures of (a) an M -bit symbol-decision
SC algorithm and (b) a 2M -bit symbol-decision SC algo-
rithm.

By considering the two scenarios in Fig. 2, Proposition 2
can be proved in a similar way as for Proposition 1.

Therefore, the symbol-decision SC algorithm is no worse
than the bit-decision SC algorithm in terms of the FER per-
formance and bridges the FER performance gap between the
bit-decision SC algorithm and the ML decoding algorithm.

3.2. Message Passing Interpretation

The SC algorithm can be considered as message passing over
a tree graph [12]. From the perspective of message passing
over a tree graph, we provide an explanation of the advantage
of the symbol-decision decoding. To this end, we introduce a
string vector Si =‘Si,1, · · · ,Si,M ’ (for 0 ≤ i < N

M ) to rep-
resent a frozen-location pattern of the i-th M -bit symbol of a
polar code with length N . If uiM+j is an information bit, Si,j

is denoted as ‘D’. Otherwise, Si,j as ‘F’. Consider a toy ex-
ample of a 4-bit symbol u4i+4

4i+1. Assuming u4i+1 and u4i+3

are information bits, and u4i+2 and u4i+4 are frozen bits.
Then the frozen-location pattern of u4i+4

4i+1 is ‘DFDF’. Ob-
viously, for an M -bit symbol, there are 2M possible frozen-
location patterns. We divide them into two types. The first
type is called a DP-I pattern, which has no ‘D’ or has no ‘F’
after the first ‘D’. There are only (M +1) DP-I patterns. The
remaining (2M −M − 1) patterns are called DP-II patterns.
Henceforth, a symbol which has a DP-I (DP-II, respectively)
pattern is called a DP-I (DP-II, respectively) symbol.

As pointed out in [1], the bit-decision decoding does not
take advantage of future frozen bits. That is, when decoding
information bit ui (i ∈ A), the fact that uj (j ∈ Ac and j >
i) is a frozen bit is not accounted for by the bit-decision SC
algorithm. For the symbol-decision SC algorithm, the future
frozen bits in future symbols and within a DP-I symbol cannot
be taken advantage of either. However, the decision rule of
the symbol-decision SC algorithm can be regarded as a local
M -bit ML decoder. As a result, some information bits can
take advantage of their future frozen bit(s) within any DP-II
symbol.

u12
u13

a

b
c

d

e

u14
u9u10

u11 u15
u16

u1 u32

Fig. 3. Tree graph of a (32, 16) polar code.

We consider a tree graph representation, shown in Fig. 3,
of a (32, 16) polar code constructed with the method in [13].
Nodes on the bottom (from left to right, u1 to u32) are called
leaf nodes. Each leaf node corresponds to a data bit. There are
three kinds of nodes in the tree graph. A rate-0 node whose
descendant leaf nodes are all frozen bits is represented by a
black node. A rate-1 node whose descendant leaf nodes are all
information bits is represented by a white node. The rest are
rate-R nodes in gray. Some descendant leaf nodes of a rate-R
node are frozen bits, and the others are information bits. We
consider how to use the knowledge of a frozen bit from the
perspective of message passing. The knowledge of a frozen
bit can be passed through only the rate-0 nodes according to
the encoding of polar codes.

Given a tree graph and M , frozen-location patterns are
determined. For the tree graph in Fig. 3, all frozen-location
patterns of M = 2, 4, and 8 are listed in Table 1. When
M = 2 and 4, there are no DP-II symbols.

Table 1. Frozen-location patterns of the (32, 16) polar code
for different Ms.

M DP-I DP-II
2 FF , FD, DD none
4 FFFF , FFFD, FDDD, DDDD none
8 FFFFFFFF , DDDDDDDD FFFDFDDD

Let us take the decoding of u12 as an example. Although
u13 is a frozen bit, this knowledge needs to pass through some
intermediate nodes a→b→c→d→e before being received by
u12 if it is to be taken advantage of in the decoding of u12.
However, because there is at least one rate-R node in the mes-
sage passing route from u13 to u12, the decoding of u12 can-
not take advantage of the frozen bit u13. However, for the
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8-bit symbol-decision SC algorithm, the DP-II symbol u16
9 is

decoded as a symbol simultaneously. The frozen bits (u11
9 and

u13) help to decode the information bits (u12 and u16
14). There-

fore, unlike the bit-decision SC decoding algorithm, the 8-bit
symbol-decision SC decoding does take advantage of u13 to
decode u12. If the 2-bit or 4-bit symbol-decision algorithm
are used, no future frozen bits can be taken advantage of in
decoding any information bit because all 2-bit or 4-bit sym-
bols are DP-I symbols. In terms of the FER over the BEC,
SDSC-32 (ML) < SDSC-16 ≈ SDSC-8 < SDSC-4 ≈ SDSC-
2 ≈ SC (shown in Fig. 4), where SDSC-i represents the i-bit
symbol-decision SC algorithm and SDSC-32 is also an ML
algorithm.
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SDSC−32 (ML):FER

SC:BER

SDSC−2:BER

SDSC−4:BER

SDSC−8:BER

SDSC−16:BER

SDSC−32 (ML):BER

Fig. 4. Error rates of decoding algorithms for the (32, 16)
polar code over the BEC.

3.3. Simulation Results
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Fig. 5. Error rates of decoding algorithms for the (1024, 512)
polar code over the AWGN channel.
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Fig. 6. Error rates of decoding algorithms for the (1024, 512)
polar code over the BEC.

Figs. 5 and 6 show bit error rates (BERs) and FERs of
symbol-decision SC algorithms with different symbol sizes
for a (1024, 512) polar code constructed by the method in [13]
over the AWGN channel and the BEC. Regarding frozen-
location patterns of the (1024, 512) polar code, all 2-bit and 4-
bit data symbols are DP-I symbols. However, for the SDSC-8
algorithm, 8 of 128 data symbols are DP-II symbols. For the
SDSC-16 algorithm, 12 of 64 data symbols are DP-II sym-
bols. In terms of the FER, SDSC-16 < SDSC-8 < SDSC-4 ≈
SDSC-2 ≈ SC for the (1024, 512) polar code. The simulation
results are consistent with Propositions 1 and 2.

The performance gains are small in our simulation results,
but these simulation results still reveal how the symbol size
affects the FER performance of the symbol-decision SC algo-
rithm. If a larger performance gain is expected, the symbol
size should be increased further. However, for larger symbol
sizes, we do not provide the simulation results because simu-
lations are very time-consuming.

In terms of the BER performance, although we cannot of-
fer a rigorous proof, we conjecture that the symbol-decision
SC algorithm is better than the bit-decision SC algorithm. The
simulation results in Figs. 5 and 6 are consistent with this con-
jecture.

4. CONCLUSION

This paper proves that the symbol-decision SC algorithm
performs better than the bit-decision SC algorithm for po-
lar codes in terms of the FER performance. Increasing the
symbol size increases the FER performance gain. Therefore,
the symbol-decision SC algorithm bridges the FER perfor-
mance gap between the bit-decision SC algorithm and the
ML decoding algorithm for polar codes.
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