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Abstract
This work is originated from the MLSP 2014 Classifi-

cation Challenge which tries to automatically detect subjects
with schizophrenia and schizo-affective disorder by analyzing
multi-modal features derived from magnetic resonance imag-
ing (MRI) data. We employ Deep Neural Network (DNN)-
based multi-view representation learning for combining multi-
modal features. The DNN-based multi-view models include
deep canonical correlation analysis (DCCA) and deep canon-
ically correlated auto-encoders (DCCAE). In addition, support
vector machine with Gaussian kernel is used to conduct clas-
sification with the compact bottleneck features learned by the
deep multi-view models. Our experiments on the dataset pro-
vided by the MLSP Classification Challenge show that bottle-
neck features learned via deep multi-view models obtain better
results than the trimming features used in the baseline system in
terms of the receiver operating characteristic (ROC) area under
the curve (AUC).
Index Terms: Deep Canonical Correlation Analysis, Deep
Canonically Correlated Auto-encoders, Schizophrenia, MRI,
Support Vector Machine, ROC/AUC

1. Introduction
This work is motivated by the MLSP 2014 Classification Chal-
lenge [1] which aims to automatically diagnose schizophre-
nia and schizo-affective disorder (henceforth schizophrenia) by
making use of multi-modal features derived from magnetic res-
onance imaging (MRI) data. Recent studies demonstrate that
the schizophrenia is a brain disease that affects more than 0.7%
of people across the world [2] and that the schizophrenia can be
efficiently detected by analyzing its bio-imaging data [3].

The MLSP 2014 Classification Challenge provides two
kinds of multi-modal features derived from MRI data [4, 5]:
one is the source-based morphometric loading (SBM) which
corresponds to structural magnetic resonance imaging (sMRI)
data; the other refers to the functional network connectivity
(FNC) which is associated with the resting state functional MRI
(rs-fMRI) data. The task for the challenge is to diagnose the
schizophrenia or predict the disease onset in subjects who are at
risk of psychosis. Although several solutions are proposed for
the task, the baseline system chosen by the challenge is based
on the simply feature trimming approach followed by the dis-
ease classification via support vector machine (SVM), which
achieved the second place in the challenge competition [1].

This work, however, aims to enhance the diagnosis of
schizophrenia by combining the multi-modal features within
deep multi-view representation learning models. Such typ-
ical models include ‘deep canonical correlation analysis’

(DCCA) [6] and ‘deep canonically correlated auto-encoders’
(DCCAE) [7], both of which are non-linear extensions of the
canonical correlation analysis (CCA) [8].

The CCA is a standard technique for unsupervised data
analysis which finds linear projections of two random vectors
that are maximally correlated. In mathematics, we denote two
random vectors (X1, X2) with covariance matrices (Σ11,Σ22)
and cross-covariance matrix Σ12. The CCA tries to find pairs
of linear projections of two views A1, A2 that are maximally
correlated, as shown in (1):

max
A1,A2

tr(AT1 Σ12A2) (1)

s.t., AT1 Σ11A1 = AT2 Σ22A2 = I,

where I is the identity matrix.
One important application of the CCA relates to learning

features for multiple modalities that are then fused for pre-
diction, which is quite fitted to the task of diagnosing the
schizophrenia. The limitation of the CCA is that this bases on a
linear projection, which makes difficult a compact feature repre-
sentation. Kernel CCA (KCCA) [9] is an alternative to the CCA
since that computes non-linear projections of the two views, as
shown in (2):

max
A1,A2

AT1K1K2A2 (2)

s.t., AT1K
2
1A1 = AT2K

2
2A2 = I,

where I is the identity matrix, K1,K2 ∈ Rm×m represent the
gram matrices in whichK1 = K−K1−1K+1K1, any entry
inK1 is represented as a kernel function k1 for two observations
xi, xj denoted as Kij = k1(xi, xj), 1 ∈ Rm×m is an all-1s
matrix, and similarly for K2.

However, KCCA presents two important drawbacks: (1)
the feature representation is limited by the fixed kernel and (2)
KCCA is not suitable for large datasets [10].

The most recently proposed techniques for deep multi-view
representation learning do not only deliver compact bottleneck
features which correspond to some latent patterns shared by
two input features, but their computational complexity is also
significantly reduced to the extent that they can be scalable to
large datasets. The deep multi-view techniques are inspired by
the deep neural network (DNN) that allows more than two hid-
den layers which can be well trained by the layer-by-layer Re-
stricted Boltzmann Machine (RBM) pre-training based on Con-
trastive divergence [11]. While the DNN has been successfully
applied to supervised classification tasks, we use it in an unsu-
pervised way to learn non-linear transformations of two kinds of
features to a space in which the data are highly correlated [12].
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In this work, DCCA and DCCAE are the two deep multi-view
models applied in the diagnosis of schizophrenia.

When bottleneck features have been learned by the deep
multi-view models, they are fed to the SVM with Gaussian ker-
nel for a final classification. The SVM follows the same setup
as the baseline system, so it is fair to compare the features used
in our system with those proposed in the baseline system.

The rest of the paper is organized as follows: Section 2
presents the DNN-based multi-view feature learning models,
including the DCCA and the DCCAE. Section 3 introduces our
system for the diagnosis of schizophrenia. Experiments are re-
ported in Section 4 and the paper is concluded in Section 5.

2. DNN-based Multi-View Representation
Learning

This section presents two DNN-based multi-view feature learn-
ing models: the DCCA and the DCCAE. The main difference
between both is whether or not the model regularization based
on auto-encoders is applied.

2.1. Deep Neural Network

The deep neural network has been widely applied to numer-
ous tasks, such as automatic speech recognition [13], computer
vision [14], and natural language processing [15]. The DNN
employed in this work allows multi-layer with more than two
hidden layers and applies the RBM pre-training in an unsuper-
vised way. The RBMs are trained layer-by-layer and are stacked
into a multi-layer perceptron (MLP) when the RBM training is
completed.

For classification tasks, a labeled layer is stacked on top of
all RBM layers and fine-tunes the parameters of the MLP by
back-propagation.

For DCCA and DCCAE unsupervised learning, RBM pre-
training for two DNNs is first conducted, and next, the parame-
ters of the DNNs and the linear transformations in the CCA are
jointly further learned by the stochastic gradient descent (SGD)
aiming at maximizing the correlation between the non-linear
transformations of two input features.

When applying unsupervised learning for the DNN auto-
encoders, the DNN is stacked by RBMs learned in an unsuper-
vised way, and the shallow layer on top of the DNN reconstructs
the inputs with minimum errors.

2.2. Deep canonical correlation analysis (DCCA)

Figure 1: Deep Canonical Correlation Analysis.

The DCCA consists of two DNNs and maximizes the
canonical correlation of the two DNN outputs, which can be
illustrated as Figure 1 and formulated in mathematics as (3):

min
Wf ,Wg,U,V

− 1

N
tr(UT f(X)g(Y )TV ) (3)

s.t., UT (
1

N
f(X)f(X)T + rXI)U = I

V T (
1

N
g(Y )g(Y )T + rY I)V = I

uTi f(X)g(Y )T vj = 0, ∀i 6= j,

where I is the identity matrix, N refers to the total number of
data, X and Y are two random vectors that represent two in-
put features, f(·) and g(·) represent non-linear transformations
of the two DNNs with parameters Wf and Wg respectively,
U = [u1, ..., uL] and V = [v1, ..., vL] refer to the CCA direc-
tions that project the DNN outputs to a bottleneck layer with L
units, and (rx, ry) > 0 are regularization parameters for sam-
ple covariance estimation. The UT f(·) is the final non-linear
projection mapping used for testing.

As discussed in [6], the DCCA requires all the training data
with the whitening constraints, and hence the SGD is not ap-
plied in a standard way. However, the DCCA can still be opti-
mized efficiently as long as sufficient large mini-batch data are
used for the gradient.

2.3. Deep canonically correlated auto-encoders (DCCAE)

Figure 2: Deep Canonically Correlated Auto-encoders.

As shown in Figure 2, the DCCAE consists of two auto-
encoders on top of two DNNs and optimizes the canonical cor-
relation of the learned bottleneck features and the reconstruction
errors of the auto-encoders. The mathematical formulation for
the DCCAE is shown as (4):

min
Wf ,Wg,Wp,Wq,U,V

− 1

N
tr(UT f(X)g(Y )TV ) (4)

+
λ

N

N∑
i=1

(||xi − p(f(xi))||2 + ||yi − q(g(yi))||2)
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s.t., UT (
1

N
f(X)f(X)T + rXI)U = I

V T (
1

N
g(Y )g(Y )T + rY I)V = I

uTi f(X)g(Y )T vj = 0, ∀i 6= j,

where the symbols I , X , Y , N , Wf , Wg , U , V , rX , rY , and
the functions f(·) and g(·) represent the same as in (3), p(·)
and q(·) are the non-linear functions associated with the two
reconstructed DNNs with parameters Wp and Wq respectively,
(xi, yi) denotes the i-th data, and λ is a regularization constant
that controls the level of the auto-encoders.

Note that the constraints in (4) are the same as those in (3)
and that only a regularization term for auto-encoders is added
to the DCCA objective.

Similar to the DCCA, the SGD can be applied to the DC-
CAE objective. The stochastic optimization is the sum of the
gradient for the auto-encoders and the gradient for the DCCA.

3. The Diagnosis System
The system for the diagnosis of schizophrenia is shown in Fig-
ure 3. The input to the system consists of two multi-modal fea-
tures that correspond to the SBM and the FNC. The multi-view
models are used for the feature representation of the two multi-
modal features. The sample classification is conducted by the
SVM with Gaussian kernel and outputs a final diagnosis.

Figure 3: Diagnosis System for the Schizophrenia.

Since our work is only concerned with deep multi-view
models for feature representation, the sample classification em-
ploys the same SVM with Gaussian kernel as the baseline sys-
tem such that we are able to compare performances obtained by
the deep multi-view models and the baseline system. The SVM
optimization is shown as (5):

max
α1,...,αN

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK(xi, xj , σ), (5)

where N is the total number of training data, {xr, yr}Nr=1 rep-
resents training data, {αr}Nr=1 denotes associate dual variables,
σ controls the width of the Gaussian kernel, and the Gaussian
kernel K(xi, xj , σ) is defined as (6):

K(xi, xj , σ) = exp(−||xi − xj ||
2

2σ2
). (6)

4. Experiments
4.1. Data profile

The database consists of two kinds of multi-modal features,
namely the source-based morphometric loading and the func-
tional network connectivity. The SBM and the FNC features are
extracted from the structural magnetic resonance imaging data
and the resting state functional MRI data respectively. The ac-
quisition and preprocessing details of structural and functional

imaging data, including the feature extraction protocol, are in-
troduced in [4]. The number of dimensions for the SBM feature
is 32, while there are 378 dimensional FNC features.

The original database contains 86 labeled and 119748 un-
labeled data. According to the evaluation requirements of the
MLSP 2014 Challenge Competition, 52% of the unlabeled data
(i.e., 62269) are specifically selected as test data for the final
evaluation, while the rest of unlabeled data (i.e., 57479) are
used as training and development for the DNN-based multi-
view models. Specifically, 5479 of these are randomly chosen
as development set and the rest (i.e., 52000) form the training
set. The SVM training is based on the small number of labeled
data: first, these labeled data are transformed into compact bot-
tleneck features based on the deep multi-view models, and next,
the SVM training is conducted. The diagnosis results for the test
data are evaluated by the MLSP 2014 Classification Challenge
evaluation system [1].

4.2. Model setup

Two DNNs are set up in the experiments: one is designed for
the SBM and the other aims at the FNC. The two DNNs are
configured as 4 hidden layers with setups as 256-256-256-256
for the SBM and as 1024-1024-1024-1024 for the FNC. The
bottleneck feature dimension is set to 122 such that the features
can be equally compared with the 122 dimensional trimming
features used in the baseline system. The number of mini-batch
data for the DNN training is set to 2048 to ensure enough data
are used. The maximum number of iterations and the momen-
tum rate are set to 20 and 0.5 respectively. All these parameters
have been tuned on the development set.

As to the particular setup of the DCCAE, the learned bot-
tleneck codes are fed to the hidden layers of the two DNNs in
a reverse order such that two reconstructed inputs are obtained.
The errors between the original inputs and the reconstructed in-
puts are then sent again to the top bottleneck layer. The itera-
tions will not terminate until the errors on the development set
fall below a given threshold. The regularization constant λ is
set to 0.1 for the first 5 iterations and reduced to 0.05 for the
rest of the iterations. These values have been optimized on the
development set.

4.3. Evaluation metric

The diagnosis results are judged based on the receiver operat-
ing characteristic (ROC) area under the curve (AUC) [16]. The
ROC curve is a plot that illustrates the performance of a binary
classifier as the discriminative threshold is varied. The curve is
created by plotting the true positive rate against the false posi-
tive rate at various threshold settings.

Figure 4 presents a ROC graph. The ROC curves feature
the true positive rate on the Y axis and the false positive rate
on the X axis. This means that the top left corner of the plot is
the ‘ideal point’ since this corresponds to a false positive rate
of 0 and a true positive rate of 1. Larger AUC means better
performance.

The reason why we use the ROC/AUC for evaluation is that,
although it is necessary to increase the accuracy for the diagno-
sis of schizophrenia, it is of significance in reducing the false
alarm rate because the false diagnosis is an extremely big mis-
take.
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4.4. Experimental results

As shown in Table 1, we compare the ROC/AUC results of dif-
ferent systems. Since the SVM is used as classifier for all the
systems, only the different models used for feature representa-
tion are listed in Table 1. Note that the baseline system denotes
the trimming feature approach and that the result of the baseline
system is obtained based on the code provided by the MLSP
2014 Classification Challenge. In addition, the setup of KCCA
has a fixed gram matrix as introduced in [9].

Figure 4: ROC Curves for the Different Models.

Figure 4 compares the different feature representation mod-
els for the diagnosis of schizophrenia and Table 1 shows the cor-
responding results. As shown in Table 1, DCCAE and DCCA
models obtain much better results than the baseline system, but
both KCCA and CCA cannot outperform the baseline system.
These results mean that the bottleneck feature generated by
DNN-based multi-view models can significantly improve the
classification tasks for the diagnosis of schizophrenia, which
is consistent with the results obtained in [7] in the sense that
both the DCCA and the DCCAE derive a more robust multi-
view feature representation than the KCCA and the CCA. Fur-
thermore, the DCCAE obtains a better result than the DCCA,
which suggests that the regularization based on auto-encoders
for the deep CCA can further improve the representation of the
bottleneck feature within the multi-modal features.

Category ROC/AUC Results
DCCAE 0.950
DCCA 0.942

Baseline 0.928
KCCA 0.910
CCA 0.882

Table 1: Results obtained by the different feature representation
models.

5. Conclusions
This work presents the deep multi-view models DCCA and
DCCAE for the diagnosis of schizophrenia. Both the DCCA
and the DCCAE combine deep neural networks with canoni-
cal correlation analysis such that the bottleneck features gen-
erated by the non-linear transformations of the DCCA and the
DCCAE present maximal correlation of the two inputs. The
experimental results suggest that the bottleneck features based
on the DCCA and the DCCAE models outperform the trim-
ming features used in the baseline system for the diagnosis of
schizophrenia in terms of the ROC/AUC evaluation. In ad-
dition, the regularization based on auto-encoders for the deep
CCA demonstrates that it delivers further improvement for the
representation of the multi-modal features.

Future work will compare our methods with other public
proposals for the diagnosis of schizophrenia.
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