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ABSTRACT

In this paper, a novel unified framework for atlas-based seg-
mentation is proposed, consisting of two main components:
forward deformation and label refinement. A newly designed
distance constraint on mesh edges is enforced with contrast
sensitivity in forward deformation based on Markov random
field. With the edge distance constraint, the object shapes in
the atlas and the target images can remain similar during de-
formation. Considering the shape variations caused by indi-
vidual difference, we then develop a label refinement process
embracing patch registration and label fusion to compensate
the small variations around the structural surfaces. As the
anatomical correspondences determined in forward deforma-
tion can differ from that in label refinement, the conventional
one-to-one correspondence constraint can be relaxed in our
framework. Experiments on two publicly available databases
IBSR and LPBA40 demonstrate that our method can obtain
better performance as compared with other state-of-the-art
methods.

Index Terms— Segmentation, Deformation, Patch, MRF

1. INTRODUCTION

Segmentation of subcortical structures in brain magnetic res-
onance (MR) images plays a significant role in clinical diag-
nosis, surgical planning and therapeutic assessment. While
manual labeling is time consuming and sensitive to inter- and
intra-rater inconsistencies. A variety of atlas-based segmen-
tation methods have been proposed to first perform nonrigid
registration between the target image and an atlas template,
and then propagate the labels from the atlas to the target image
[1]. However, the automated segmentation of MR images re-
mains a challenging task due to intensity inhomogeneity, bias
field and similar intensity profiles among different tissues.

In the conventional methods of pair-wise registration [2,
3], only uni-directional deformation between the atlas and
the target images is performed. To improve the quality of
anatomical and matching correspondences between two im-
ages, inverse consistency [4] and symmetric diffeomorphism
[5] methods are proposed to enforce a special constraint that

the forward deformation from the atlas to the target should be
consistent with the inverse deformation. In both cases, it is as-
sumed that there exits a one-to-one correspondence implicity
or explicitly. Given the variations among different subjects,
using strict one-to-one correspondence can lead to a less sat-
isfactory segmentation quality.

Distinct with the traditional uni- or bi-directional nonrigid
registration, a novel integrated scheme composing of forward
deformation and label refinement is proposed in this paper.
The main contributions of our method are listed as follows.
First, besides conventional intensity information, in the for-
ward deformation, the shape constraint in terms of edge dis-
tance are encoded to keep the shapes of the atlas and the target
image similar. Second, to compensate small shape variations,
patch-based label fusion is conducted around the surface of
the segmented target structure in the label refinement process.
Third, under this new scheme, as the registration directions of
forward deformation and label refinement are opposite, the
anatomical correspondences established in each step can be
different and the restrictive one-to-one correspondence con-
straint can be relaxed.

2. FORWARD DEFORMATION

In this section, under the framework of Markov random field,
we present the modeling of the forward deformation process,
which incorporates contrast sensitivity and shape constraint
in the form of mesh edge distance.

2.1. Background

Markov random field (MRF) is an undirected graph in which
the attribute of one node is influenced by its connected nodes.
Its general form is given as follows [6],

E =
∑
p∈P

Dp(lp) +
∑
p∈P

∑
q∈N (p)

Vp,q(lp, lq), (1)

where P is defined as a set of nodes, lp is a discrete label for
node p, andN (p) is its neighborhood system. The first unary
term Dp is the sum of data cost and the second term Vp,q
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represents the whole pair-wise potential in a neighborhood
system N (p).

In this paper, meshes are employed to reconstruct the sur-
face of the object structure in the atlas and the vertices of
these meshes are used as control points P for deformation.
Then N (p) refers to the set of adjacent vertices which are
in the same triangle plane as p. We define the deformation
region as [0,±1,±2, · · · ,±r]d, where r represents the maxi-
mum scope that one node can deform and d is the dimension
of this region. Each discrete displacement vector ~d(lq) in the
deformation region can be represented by a unique label lp in
the discrete label space. Under the MRF framework, as such,
the registration procedure of finding the optimal displacement
vector for each node can turn into seeking an optimal label for
each node.

Inspired by the good performance of normalized cross
correlation (NCC) in nonrigid image registration [7], we uti-
lize it to estimate the data cost term Dp in Equation (1). For
one control point p ∈ P , the similarity between two patches
(the patch surrounding p in the atlas and the patch centered
at p + ~d(lq) in the target image) is assessed with NCC and
encoded to Dp after normalized to [0, 1]. The lower the value
of Dp, the more similar between two patches.

2.2. Regularization and Edge Distance Constraint

As for the second term in Equation (1), the difference between
two adjacent displacement vectors is conventionally used as
a regularization term to enforce smoothness [3, 8]. The pair-
wise energy for vector difference is defined as follows,

V R
p,q(lp, lq) =

|~d(lp)− ~d(lq)|
maxlp,lq |~d(lp)− ~d(lq)|

, (2)

where ~d(lp) and ~d(lq) are the corresponding displacement
vectors of lp and lq respectively, as shown in Fig. 1. The
numerator measures the difference between these two vec-
tors and the denominator represents the maximum difference
among all possible combinations of ~d(lp) and ~d(lq) inside the
deformation region.

For segmenting deep structures in magnetic resonance
brain images, due to the poor contrast in the structure bound-
aries, the intensity information alone is inadequate to provide
a reliable segmentation. In this paper, we propose to incor-
porate the local shape information in the form of Euclidean
distance e and the corresponding pair-wise energy is defined
as follows,

V E
p,q(lp, lq) =

|e(lp, lq)− ea|
maxlp,lq |e(lp, lq)− ea|

, (3)

where p and q are two neighboring vertices on meshes, ea is
the edge distance between them in the atlas, e(lp, lq) is the
Euclidean distance in the target image with deformation la-
bels lp and lq respectively, as illustrated in Fig. 1. Besides
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Fig. 1. One node p (red point) and its neighbors q (green
points) shown on image lattice; Displacement vector ~d(lp) for
node p and ~d(lq) for node q respectively; Euclidean edge dis-
tance between p and q at the initial stage ea (origin line) and
e(lp, lq) (blue line) after deformation.

the constraints on the number of vertices and the connectiv-
ity of edges in topology preservation, V E

p,q also enforces the
distance conservation of edges during deformation. With this
term, the shape information on mesh edge distance is main-
tained before and after deformations.

Although the regularization term V R
p,q can enforce the sim-

ilarity between two adjacent displacement vectors, after sev-
eral iterations, the distance between two nodes can still be
different from that at the initial stage. By contrast, the edge
distance constraint term V E

p,q helps maintain the distance be-
tween two nodes and is not significantly affected by the num-
ber of iterations. This new term is essential to our iterative
MRF strategy which will be described later.

2.3. Contrast Sensitivity

As shown in Fig. 2, the image contrast condition varies in
brain MR images. For the high contrast region, an accurate
segmentation can be obtained with the intensity prior. How-
ever, for the low contrast region, we need to rely more on
the shape prior to find a reliable segmentation result. To ef-
fectively enforce the edge distance constraint with different
regional contrast conditions, we use the Root Mean Square
(RMS) to assess the regional contrast,

αp =

√√√√ 1

xyz

x∑
i=1

y∑
j=1

z∑
k=1

(Iijk − I)2, (4)

where Iijk is the intensity value of a pixel located at (i, j, k)
within a x × y × z region centered at node p and I is the
mean intensity value of this region. The RMS-based contrast
is first normalized to [0, 1] and then combined with the data
cost term. Fusing contrast sensitive data cost term, the edge
distance constraint and the regularization term, Equation (1)
can be rewritten as,

E =
∑
p∈P

αp∗Dp(lp)+
1

|N |
∑
p∈P

∑
q∈N (p)

(V E
p,q(lp, lq)+V

R
p,q(lp, lq)).

(5)
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Fig. 2. Flowchart of forward deformation (blue arrow) and la-
bel refinement. Red arrow and green arrow: patch registration
and label assignment in the label refinement process respec-
tively; Red square and green square: a surrounding patch of
a control point in the target image and the most similar patch
found in the atlas.

As αp ∗ Dp, V E
p,q and V R

p,q have been normalized between 0
and 1, |N |, which represents the average number of p’s neigh-
bors, is introduced as a normalization constant.

To minimize the energy function in Equation (5), TRW-
S [9] is chosen as the optimizer, since it does not have any
constraint on the MRF formulation and can guarantee low en-
ergy bound during optimization. However, TRW-S will be-
come slow when the size of deformation region (the number
of displacement labels) is large. To speed up the optimization
procedure, an iterative strategy is exploited in our approach,
by taking a small deformation region into consideration each
iteration. By combining TRW-S and the iterative strategy, we
can find one optimal displacement label for each node in a
large deformation field efficiently.

3. LABEL REFINEMENT

According to the clustering results in shape analysis [10], it
can be observed that although the shapes of the same struc-
ture among different subjects are relatively similar, there still
exists small differences. With the forward deformation as de-
scribed in Section 2, a similar shape as in the atlas can be ob-
tained for the target image. Considering the small shape vari-
ations among different subjects, the propagated label maps
based on forward deformation are still not accurate enough
as a quality segmentation. In this paper, an additional step is
introduced to refine the estimated labels based on the concept
of patches and patch registration.

Under the assumption that similar appearance is induced
from similar anatomical structure, we perform label refine-
ment based on the matching of patch appearances. In Fig.
2, an intensity image and its corresponding label map of one
subcortical structure are shown for atlas and target respec-
tively. With the forward deformation (blue arrow), we can get
a similar shape as in the atlas for the target image. In the label
refinement process, for each control point p ∈ P in the target
image, a patch covering p (red square) is taken into consider-
ation and the most similar patch centered at point p + ~d(l∗p)
(green square) can be obtained by minimizing Dp(lp).

Based on the correspondence determined in patch regis-
tration, the corresponding labels are assigned from the la-

bel map of the atlas to the target image (green arrow) with
weights. The definition of weightw(p, l∗p) is given as follows,

w(p, l∗p) = 1−Dp(l
∗
p). (6)

It can be inferred that the voting weight in Equation (6) is pro-
portional to the similarity between two patches. During label
assignment, instead of propagating the label of one point from
the atlas to the target image, for each pair of corresponding
patches, we assign a set of labels for one center point and its
nearest neighbors from the atlas to the target image,

∀p ∈ P, ~L(p) = sgn(wi(p, l
∗
p)
~L(p+ ~d(l∗p)), (7)

where ~L(p) refers to the labels for point p and its 6 nearest
neighbors in 3D image, with the values of +1 or −1 standing
for that pixel is inside or outside structure respectively.

It is worth noting that this proposed label refinement
method differentiates from the label consistency or diffeo-
morphism methods [4, 5]. Instead of enforcing the constraint
that the deformation from the atlas to the target should be
consistent with the inverse deformation, our method allows
the forward deformation and patch registration in label re-
finement to be different. Moreover, this kind of label incon-
sistency can benefit the segmentation result, by relaxing the
restrictive constraint of one-to-one correspondence. Based
on the similar shape acquired in the forward deformation, the
label refinement can compensate the slight shape variations
by refining the estimated labels around the surface.

In medical image analysis, it is common that quality man-
ually labeled atlases may be limited while unlabeled target
images can be plenty. As such, our method is further extended
to collect useful information from unlabeled target images
based on group-wise registration [11]. With one single atlas
provided and multiple target images to be segmented, other
than treating each target image independently, the single atlas
and other segmented target images are regarded as new atlases
to help with the label refinement process. For each control
point p ∈ P in the target image, the new atlas i (i = 1, · · · , n)
can provide a set of refined labels ~L(p+ ~d(li∗p )) and Equation
(7) needs to be rewritten as,

∀p ∈ P, L(p) = sgn(

n∑
i=1

wi(p, l
i∗
p ) ~L(p+ ~d(li∗p )). (8)

In [12], a semi-supervised segmentation method is proposed,
in which the segmented target images are also used as at-
lases to assist further segmentation. Distinct with this semi-
supervised method, we perform label refinement around the
structural surface rather than conducting another round of
nonrigid registrations between the new atlases and the target
image.

4. EXPERIMENTS

In the experiments, the proposed unified framework has been
evaluated on two publicly available MR brain image data sets
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– IBSR1 and LPBA402, which has 18 and 40 subjects re-
spectively. As implied in [13], several modes can exist in
a large population and one atlas should be selected for each
mode. In the experiments, we first divided each data set into
subgroups with the Affinity Propagation (AP) clustering [14]
based on mutual information and selected the center image
of each cluster as the atlas. Considering the intensity incon-
sistency among input images, we then conducted histogram
matching in each subgroup with the Insight Toolkit3 and all
images were registered to the center image based on the affine
transformation provided in FSL toolbox4.

In the evaluations, our method has been compared with
three state-of-the-art methods: SyN [5], FNIRT and Dense
MRF [8]. According to the published evaluation of 14 non-
rigid registration methods [1], SyN based on symmetric dif-
feomophism is selected as one of the best methods. FNIRT
based on a linear combination of cubic B-splines, is a conve-
nient and widely used nonrigid registration method provided
in FSL toolbox. As our method is formulated under the MRF
framework, we also compared with the Dense MRF, which
applies dense image registration with FastFD as the optimizer.

The settings of parameters for the compared methods fol-
lowed that in [1, 8]. As for the parameter settings of our
method, the size of theNCC andRMS region was 7×7×7.
Since iterative strategy was exploited in the optimization pro-
cess, the deformation region for each iteration was small and
set to [0,±1]3 and the number of iterations was 5. Due to the
fact that we used triangular meshes to reconstruct the surface
of each subcortical structure, the average number of neigh-
bors for each node |N | was set to 6.

Dice Coefficient (DC) was used to assess the accuracy
of segmentation, defined as DC = 2|A

⋂
B|

|A|+|B| , where A and
B are two regions of a specific structure in two images and
0 ≤ DC ≤ 1. As we focus on segmenting deep structures in
brain MR images, quantitative segmentation results of subcor-
tical structures measured with DC on two data sets are listed
in Table 1 and Table 2 (highest value written in red). Each
subcortical structure was divided into left/right and the Dice
Coefficient was calculated respectively. As shown in Table
1, the results on IBSR indicate that for most of the subcorti-
cal structures, our method can obtain the highest segmenta-
tion accuracy. The DC values listed in Table 2 reveal that the
proposed method performs consistently better than the other
three methods on LPBA40.

In the method evaluations, all methods were run on a 3.30
GHz, Dual-Core CPU with a 20 GB RAM. Different from
the compared methods which perform image registration and
label propagation for the whole image volume, our method
conducts segmentation for one particular structure each time.
The average running rime for our method to segment one sub-

1https://www.nitrc.org/projects/ibsr
2http://www.loni.ucla.edu/Atlases/LPBA40
3http://www.itk.org/
4http://fsl.fmrib.ox.ac.uk/fsl

Table 1. Segmentation results on IBSR data set.

FNIRT SyN Dense MRF Our Method

Thalamus 0.86-0.85 0.85-0.85 0.86-0.86 0.87-0.87

Caudate 0.77-0.76 0.78-0.76 0.81-0.79 0.81-0.80

Putamen 0.80-0.80 0.83-0.83 0.85-0.85 0.86-0.87

Pallidum 0.73-0.73 0.75-0.76 0.76-0.77 0.78-0.79

Hippocampus 0.69-0.70 0.71-0.74 0.72-0.74 0.72-0.74

Amygdala 0.65-0.65 0.63-0.66 0.65-0.63 0.65-0.63

Average 0.75±0.03 0.76±0.04 0.77±0.02 0.78±0.02

Method
Structure

Table 2. Segmentation results on LPBA40 data set.

FNIRT SyN Dense MRF Our Method

Putamen 0.77-0.79 0.76-0.76 0.78-0.79 0.81-0.82

Caudate 0.69-0.70 0.71-0.72 0.74-0.75 0.77-0.76

Hippocampus 0.75-0.75 0.74-0.72 0.76-0.77 0.77-0.78

Average 0.74±0.03 0.73±0.03 0.77±0.04 0.79±0.03

Method
Structure

cortical structure is around 3 minutes. As for the compared
methods, the average running time to label one target image
is around 2 minutes for Dense MRF, 6 minutes for FNIRT and
32 minutes for SyN. The experimental results reveal that our
proposed framework can segment the particular subcortical
structure efficiently.

5. CONCLUSION

In this paper, a novel unified atlas-based segmentation frame-
work is presented, including forward deformation and label
refinement. Under the framework of Markov random field,
the shape information captured in the form of edge Euclidean
distance and contrast sensitivity term are encoded in the for-
mulation of forward deformation. We further perform the la-
bel refinement process to update the labels around the surface
of the segmented target structure and to compensate the small
shape variations. Experiments on IBSR and LPBA40 have
been carried out and results demonstrate that our method can
outperform other state-of-the-art methods in terms of accu-
racy and efficiency.

6. ACKNOWLEDGMENT

This work was supported in part by the K. S. Lo Foundation
and the Research Grants Council of Hong Kong General Re-
search Fund under Grant 16203115.

950



7. REFERENCES

[1] Arno Klein, Jesper Andersson, et al., “Evaluation of
14 nonlinear deformation algorithms applied to human
brain mri registration,” NeuroImage, vol. 46, no. 3, pp.
786–802, 2009.

[2] Dinggang Shen and Christos Davatzikos, “Hammer: hi-
erarchical attribute matching mechanism for elastic reg-
istration,” IEEE TMI, vol. 21, no. 11, pp. 1421–1439,
2002.

[3] Aristeidis Sotiras, Nikos Komodakis, et al., “Graphical
models and deformable diffeomorphic population regis-
tration using global and local metrics,” in MICCAI, vol.
5761, pp. 672–679. Springer, 2009.

[4] Gary E Christensen and Hans J Johnson, “Consistent
image registration,” IEEE TMI, vol. 20, no. 7, pp. 568–
582, 2001.

[5] Brian B Avants, Charles L Epstein, et al., “Symmetric
diffeomorphic image registration with cross-correlation:
evaluating automated labeling of elderly and neurode-
generative brain,” MedIA, vol. 12, no. 1, pp. 26–41,
2008.

[6] Yuri Boykov, Olga Veksler, and Ramin Zabih, “Fast
approximate energy minimization via graph cuts,” IEEE
PAMI, vol. 23, no. 11, pp. 1222–1239, 2001.

[7] Brian B Avants, Nicholas J Tustison, et al., “A repro-
ducible evaluation of ants similarity metric performance
in brain image registration,” NeuroImage, vol. 54, no. 3,
pp. 2033–44, 2011.

[8] Ben Glocker, Nikos Komodakis, et al., “Dense image
registration through mrfs and efficient linear program-
ming,” MedIA, vol. 12, no. 6, pp. 731–741, 2008.

[9] Vladimir Kolmogorov, “Convergent tree-reweighted
message passing for energy minimization,” IEEE PAMI,
vol. 28, no. 10, pp. 1568–1583, 2006.

[10] E. Konukoglu, B. Glocker, et al., “Wesd-weighted spec-
tral distance for measuring shape dissimilarity,” IEEE
PAMI, vol. 35, no. 9, pp. 2284–2297, 2012.

[11] Serdar K Balci, Polina Golland, et al., “Free-form b-
spline deformation model for groupwise registration,” in
MICCAI Workshop on SR. 2007, pp. 23–30, Springer.
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