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ABSTRACT

Bone scintigraphy is widely used to diagnose bone diseases.
Accurate hotspot segmentation is a critical task for tumor
metastasis diagnosis. In this paper, we propose an interactive
approach to detect and extract hotspots in thoracic region
based on a new multiple instance learning (MIL) method
called EM-MILBoost. We convert the segmentation problem
to a multiple instance learning task by constructing positive
and negative bags according to the input bounding box. In
order to be robust against noisy input, we train a region-level
hotspot classifier with EM-MILBoost and develop several
segmentation strategies based on it. The experimental results
demonstrate that our method outperforms other methods and
is robust against various noisy input.

Index Terms— Hotspot segmentation, bone scintigraphy,
multiple instance learning, EM-MILBoost, region-level clas-
sifier

1. INTRODUCTION

Bone scintigraphy is very effective in diagnosing cancer and
tumor metastases [1]. The abnormalities in bone scintigra-
phy images are called “hotspot”, which generally appear to be
brighter than its surroundings. Accurate hotspot segmentation
is helpful for extracting information such as shape, intensity,
location. However, due to poor image quality and weak
boundary contrast in bone scintigraphy, accurate hotspot
segmentation is a challenging task. Many computer-aided
diagnosis (CAD) systems have been developed to aid clini-
cians in the isolation of hotspots. May Sadik et al. [2] used
adaptive threshold of a specific region for hotspot segmen-
tation. Huang et al. [3] uses linear regression model to find
regional threshold to extract hotspot. Yin et al. [1] proposed a
fuzzy diagnosis system which perform local-maximum-based
hotspot segmentation. Experienced physicians require a con-
venient interactive tool for accurate hotspots segmentation.
However, most of proposed methods focus on detection of
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Fig. 1. The overall framework of our approach.

hotspots rather than accurate segmentation. Thresholding
and region growing [4] are two widely used segmentation
approaches. But none of them could achieve desired hotspot
segmentation results.

MIL technique has been widely used in several scenarios,
such as MILBoost [5] in object tracking , MCIL [6] and mi-
Graph [7] in medical diagnosis. It can significantly reduce
the efforts in human annotations and has the ability to ex-
ploit information from data automatically. Thus, we choose
MIL to execute the segmentation task. MILCut [8] is a new
interactive image segmentation method based on MILBoost,
which achieves state-of-the-art performance in natural image
datasets. It constructs negative bags from pixels outside the
input bounding box. However, hotspot pixels very likely lo-
cate outside the box in bone scintigraphy and is falsely treated
as normal pixels. Meanwhile, MIL-Boost may fail to distin-
guish hotspot from background due to weak boundary con-
trast. And input bounding box may not contain hotspots or
not as tight as [8] says, which is called “noisy” input.

In this paper, we propose several methods to tackle these
problems, Fig. 1 gives an illustration of our framework. A
new bag-constructing method is first proposed to form bags
from normal pixels in the belt region of the bounding box.
Then a new MIL method based on EM optimization strategy,
called EM-MILBoost, is developed for accurate hotspot seg-
mentation. Finally, a region-level hotspot classifier and sev-
eral strategies are developed to deal with noisy input. Exper-
iments in Sec. 4 demonstrate the effectiveness of our frame-
work in accurate hotspot segmentation over other methods.
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2. METHODOLOGY

2.1. MILboost Approach

MILBoost [5] is a boosting approach to solve MIL problem
using AnyBoost framework [9]. It optimizes the cost func-
tion and trains weak classifier. In multiple instance learning,
instances are not directly labeled. They are grouped in posi-
tive or negative bags. There is at least one positive instance in
positive bag while all instances in negative bag are negative.

We denote a bag as Xi = {xi1, . . . , xin}, in which i is
the bag index and j is the instance index. The label of bag is
denoted as yi ∈ {−1, 1}, the hidden label of instance yij ∈
{−1, 1} is latent during training. The relation between yi and
yij can be represented as: yi = max

j
(yij).

According to AnyBoost , the negative log-likelihood loss
function is as follows:

L(h) = −
n∑

i=1

(1(yi = 1) log pi+1(yi = −1) log(1− pi))

(1)
Here, pi is the probability of bag i to be positive. pi can be

computed by generalized mean function pi = 1
m (

m∑
j=1

prij)
1
r

as an approximation to max function, where pij is instance-
level probability to be positive. pij is define as pij =

1
1+exp(−2yij)

. yij =
∑

t αtht(xij) is the output of cur-
rent weighted sum of weak classifiers. Then we can compute
new weights as follows:

wij = −
∂L
∂yij

=


2
pr
ij−p

r+1
ij

n∑
j=1

pr
ij

if yi = 1

− 2pi

1−pi

pr
ij−p

r+1
ij

n∑
j=1

pr
ij

if yi = −1
(2)

2.2. EM-MILboost Approach

However, MILBoost does not update the sample distribution
in the process of weak classifiers training. It may affect the
quality of trained classifiers. In order to overcome this prob-
lem, we apply the EM optimization strategy into MILBoost to
update positive and negative distributions during weak clas-
sifier training process, which is called EM-MILBoost. This
strategy gives a better approximation to real distributions of
samples.

Given feature vector of all instances, we formulate posi-
tive class ω1 and negative class ω−1 as two Gaussian distri-
butions N (µ1, σ1) and N (µ−1, σ−1). According to the sign
of wij , we initialize positive distribution parameters µ1 and
σ1 by computing mean and standard deviation from instances
correspond to wij > 0. The negative distribution parameters
µ−1 and σ−1 are initialized by computing mean and standard

deviation from instances correspond to wij < 0. When train-
ing weak classifier, we set equal prior for ω1 and ω−1. For
each class, we calculate posterior probability of each instance
based on Bayesian formula:

p(yij = c|xij) ∝ p(xij |yij = c) = N (xij |µc, σc) (3)

where c ∈ {−1, 1}. Then we successively apply the E-step
and M-step to compute updated distributions:

E-step: compute generative probability of each class

p(ωc|xij) =
N (xij |µc, σc)∑

k=−1,1N (xij |µk, σk)
(4)

where c ∈ {−1, 1}.
M-step: perform parameter estimation

µ′c =

∑
i,j p(ωc|xij)xij∑
i,j p(ωc|xij)

(5)

σ′c =

√√√√∑i,j p(ωc|xij)(xij − µ′c)
2∑

i,j p(ωc|xij)
(6)

where c ∈ {−1, 1}.
At last, the new mean and standard deviation of each dis-

tribution is calculated under the following update rule:

µc ← ηµc + (1− η)µ′c (7)

σc ← ησc + (1− η)σ′c (8)

where η is the learning rate.
The candidate weak classifiers can be represented as:

hcandidate = sign

{
log

[
N (xij |µ1, σ1)

N (xij |µ−1, σ−1)

]}
(9)

Then we find the best weak classifier subjected to following
constraints from candidate weak classifiers:

ht = arg min
hcandidate

∑
i,j

1(hcandidate(xij) 6= yi) |wij |
(10)

Line search is then performed to find the weight αt for the
weak classifier which minimizes L(h). After training given
number of weak classifiers, we get the final strong classifier :

h(xij) =

T∑
t=1

αtht(xij) (11)

3. HOTSPOT SEGMENTATION

3.1. Pixel-level Hotspot Segmentation

Before hotspot segmentation, the bone scan image is prepro-
cessed by applying density slicing approach to map intensity
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image to RGB color space. This map aims at increasing dis-
crimination between pixels with similar intensities. In regard
to boosting method, more dimensions may yield stronger
classifier, thus is helpful for accurate segmentation in bone
scan image. To increase segmentation speed and achieve
more local information, we apply SLIC superpixel [10] to
mapped bone scan image for further preprocessing. We treat
the output superpixels as instances, and construct positive
bags from instance within bounding box and negative bags
from the 6-pixel-width region around the bounding box (belt
region) respectively. Compared to MILCut, our approach has
an advantage that eliminate most influence of hotspot pix-
els outside bounding box. Fig. 2 illustrates our formulation,
where negative bags are from blue region and positive bags
from red region.

Hotspot

Negative bags

Positive bags

6 pixels

Fig. 2. Formulation to construct positive and negative bags.

After constructing positive and negative bags , we extract
features for each instance. For each superpixel, we use av-
erage color of all pixels in RGB and CIELab color space to
form 6 dimensional features. We then apply EM-MILBoost
to train an instance-level classifier, then use the classifier to
classify instances within the bounding box. According to the
classification result, superpixels labeled as positive are treated
as hotspots. To smooth the boundary of initial segmentation,
we use the output probability to generate trimap and adopts
KNN matting [11] for post-processing.

3.2. Solution to Noisy Input

3.2.1. Region-level Hotspot Classifier

To deal with noisy input, we need a classifier to determine
whether there are hotspots in a certain region. We train a
region-level classifier (RLC) for hotspot detection. We treat
query region as a bag and densely sample 6*6 patches as in-
stances from it. The overlap step size is 3 pixels. We then ex-
tract a 29-dimension feature vector for each instance, includ-
ing 11 dimensions for intensity and 18 dimensions for tex-
ture. Intensity features consist of statistical histogram feature
(mean , maximum, standard variation etc.), 4-neighborhood
contrast and symmetric contrast. We use weighted difference
to compute 4-neighborhood contrast:

contrastneighbor(M,N) =
1

10

n∑
i=1

2i(Mi −Ni) (12)

where M and N are histograms of center patch and 4-
neighborhood patch respectively. For symmetric contrast,
we first find symmetric patch by calculating body central
line as [1] does, then we compute symmetric contrast using
revised chi-square distance:

contrastsymmetry(M,S) =

n∑
i=1

(Mi − Si)
2

Mi + Si + 1
(13)

where M and S are histograms of center patch and symmet-
ric patch respectively. For texture feature, we use a variant
of local binary patterns (LBP) [12], in which the threshold
used is the mean intensity of the whole image. We collect
3766 instances to form 12 positive bags and 15 negative bags.
Finally we apply EM-MILBoost to train the region-level clas-
sifier. Fig. 3 shows examples of classification results. We can
see the classifier is both sensitive and specific.

Fig. 3. Region-level classification result. Upper row: normal
regions, lower row: abnormal regions.

3.2.2. Strategy to Deal with Noisy Input

The input bounding box may not satisfy the “valid” and
“tight” constraints proposed by [8]. For example, if the input
bounding box does not contain any hotspot, traditional meth-
ods will still execute segmentation, thus leads to significant
error. To deal with “noisy” input bounding box, we put for-
ward 4 solutions corresponding to 4 different conditions for
RLC:

i) If there is no hotspot in bounding box, RLC will a
make a decision not to perform segmentation.

ii) If the bounding box is not tight, false-positive bags
will exist in training dataset, leads to ill-learned classifier. We
use RLC to roughly locate hotspot region and generating a
smaller and tighter bounding box.

iii) If there are hotspot pixels around bounding box, we
apply RLC to make a selection of instances, exclude false-
negative instances from negative bags.

iv) If hotspot is not completely included in bounding box,
we search the 4 neighborhood strip area of the bounding box
one by one. If hotspot region is found, we add in this area and
construct a improved bounding box.
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4. EXPERIMENT AND DISCUSSION

In this section, we apply the proposed EM-MILboost-based
approach for accurate hotspot segmentation. We set parame-
ter r to 20 in generalized mean, the update learning rate η to
0.9, the maximum number of weak classifiers T to 50. We
then conduct a series of experiments to test our method com-
pared with MCIL [6], mi-Graph [13], MIL-Boost [5], adap-
tive region growing [4] and thresholding method.

Bone scan images used in training and experiments are
collected from Department of Nuclear Medicine, Shanghai
Renji Hospital. The labels of bags used in region-level clas-
sifier training is from gold standard of radiologist diagnosis.
We carefully select and construct a dataset consists of 100
representative hotspots from 46 images with different size,
shape, brightness.

Fig. 4. Binary segmentation results of different meth-
ods: (a) input bounding box (yellow) and ground truth (or-
ange); (b) our method; (c) adaptive region growing [4]; (d)
MCIL [6]; (e) mi-Graph [13]; (f) MILBoost [5]; (g) thresh-
olding method.

Fig. 5. The segmentation results with 4 kinds of noisy inputs:
(a) no hotspot in bounding box; (b) bounding box is not tight
enough; (c) hotspots exist in belt region (without instance se-
lection); (d) hotspots exist in belt region (with instance selec-
tion); (e) bounding box is not complete enough. Meaning of
colors - green: normal region; red: hotspot boundary; cyan:
original bounding box; yellow: improved bounding box.

We tested these approaches on the hotspot dataset, and
invited expert radiologist to annotate the ground truth of each
image. Fig. 4 shows some segmentation results of these
methods. Our method achieves the best segmentation results
among all the methods. Fig. 4(a) gives the input bounding box
and segmentation ground truth. Fig. 4(c) shows the results
of adaptive region growing [4]. This method needs manually
set of maximum number of growing pixels that may lead to

bigger or smaller result with different parameters. Fig. 4(d)-
(f) show the results of 3 other multiple instance learning
approaches. These methods do not work well and fail to ex-
ploit intrinsic information from training data. Fig. 4(g) shows
the result of thresholding method. The segmentation results
appear to be coarse in boundary and may have little holes
inside. In contrast, Fig. 4(b) shows that our method makes
accurate hotspot segmentation in cases of single, in pair or
vague hotspots.

In this paper, we use Jaccard index (J) and F1-score as
metrics to measure the segmentation performance of each al-
gorithm. Jaccard index is defined as: J = |S∩G|

|S∪G| , where S is
segmentation result and G is ground truth. While F1-score is
given by: F1 = 2·Precision·Recall

Precision+Recall . Table 1 shows the quan-
titative evaluation of each method and demonstrates that our
method outperforms other methods in both two metrics.

Algorithm Ours [4] [6] [13] [5] Thr

Jacc(%) 66.0 58.8 58.1 49.7 47.5 51.8
Prec(%) 79.6 88.2 70.1 51.9 70.1 61.4
Rec(%) 84.3 70.0 81.5 90.0 73.7 87.9
F1-score(%) 77.1 71.9 70.7 63.7 59.7 65.7

Table 1. Quantitative evaluation on hotspot dataset.

Finally, we test our strategies to noisy input bounding box.
Fig. 5 shows the segmentation results for 4 different types of
noisy input. Fig. 5(a) shows that segmentation is not executed
in case of no hotspot in bounding box. Fig. 5(b) shows the
result when bounding box is not tight. Our approach shrinks
the box to reasonable size and achieve a satisfactory result.
Fig. 5(c) and (d) shows hotspot segmentation results without
and with instance selection respectively, when hotspots exist
in belt area of box. Fig. 5(c) shows that the extracted hotspot
boundary is not correct without instance selection. It indicates
that instance selection does make sense in this case. Fig. 5(e)
shows that our strategy searches 4 neighborhood of the box
and enlarges the box to reasonable size when bounding box is
not complete. These results demonstrate that our strategy is
effective to deal with various kinds of noisy input.

5. CONCLUSION

In this paper, we propose a novel method using multiple in-
stance learning to segment hotspot in thoracic bone scintigra-
phy. EM-MILBoost algorithm is proposed for hotspot seg-
mentation to make better approximation to distributions of
positive and negative class. To deal with noisy inputs, we
train region-level classifier and propose four strategies. Ex-
periments show the effectiveness of our method.
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