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ABSTRACT

We propose to represent the shape of an organ using a neu-
ral network classifier. The shape is represented by a function
learned by a neural network. Radial Basis Function (RBF)
is used as the activation function for each perceptron. The
learned implicit function is a combination of radial basis func-
tions, which can represent complex shapes. The organ shape
representation is learned using classification methods. Our
testing results show that the neural network shape provides
the best representation accuracy. The use of RBF provides a
rotation, translation and scaling invariant feature to represent
the shape. Experiments show that our method can accurately
represent the organ shape.

Index Terms— Shape Presentation, RBF Kernel, Artifi-
cial Neural Network, 3D Reconstruction

1. INTRODUCTION

Medical image analysis is an important tool to help diagno-
sis. To analyze an organ accurately, doctors usually capture
3D Magnetic Resonance (MR) images of the organ. For each
MR image, the most observable and useful information is the
organ boundary shown in the images. Manually segmenting
the boundary of all the organ images is tedious and not ob-
jective. To relieve the manual work and improve the bound-
ary detection, we propose to use vision and machine learning
methods, to automatically detect organ boundary based on the
learned organ shape. Through detected boundary, we can also
compare the differences between various organ shapes.
Parametrized 2D to 3D surface reconstruction has been
widely applied as morphable models [1, 2] where the 3D
surface is automatically generated from multiple 2D pho-
tographs. The morphable models have been applied to more
general shapes, such as cars and animals [3], as well as human
bodies [4]. Partial differential equations [5, 6, 7] for solving
signed distance functions and continuous functions from a set
of disorganized point samples [8, 9] are also applied to esti-
mate surfaces. Machine learning approaches are used to build
local or global surface function based on a combination of
radial basis functions (RBF) [10, 11] to describe the surface
curves [12, 13, 11]. Current research transforms the con-
tour points in 2D image to 3D shape in order to better study
the shape properties. By applying kernel machine mapping
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similarity function from a point space to a Hilbert space, the
surface of the 3D object can be represented as the hyperplane
for classifying the point cloud data [14]. Gorelick et al. [15]
assigned for every silhouette internal point a value which
reflects the mean time required for a random walk beginning
at this point to hit the boundaries. The boundary representa-
tion function is calculated by solving Poisson equation. The
Support Vector Machine (SVM) with Radial Basis Function
(RBF) kernel was further explored to represent sparse subset
of points (support vector) by a set of radial basis functions
[16]. Liu et al. [17] used the total Bregman Divergence (tBD)
based 11-norm center as the representative of a set of shapes
for the efficient and robust distance measure of dissimilarity
between shapes of tBD.

Making use of the ground truth of the organ point cloud
boundary, we create the positive boundary points and the neg-
ative boundary points by scaling up and down ground truth
boundary points, which are later used for training the classi-
fier. We use several different classification methods and com-
pare the performance of different approaches. In our training
phase, we train the boundary classification methods with three
groups of points. The three labeled groups of points are points
outside the boundary marked as -1, points on the boundary
marked as 0 and points inside boundary marked as 1. Based
on the trained classifiers, we can obtain a combination of ra-
dial basis functions with neural network representing an organ
shape and detect the boundary points lying on the shape.

To summarize the contribution of our paper, we use Neu-
ral Network with radial basis function in perceptrons to rep-
resent shape. The combination of learned RBF functions can
accurately describe the shape mathematically. Meanwhile,
different from support vector shape [16], the use of Neural
Network can represent the shape with 3 classes of points,
making the shape representation more accurate.

2. 3D POINTS CLASSIFICATION

As our purpose is to represent organ shape based on classifi-
cation method, we test several classic classification methods
(Naive Bayes, Neural Network, nearest neighbour and SVM-
RBF kernel) on the effect of separating points on the shape
boundary out of all other points not on the boundary. The test
is conducted on a public liver dataset [18]. The training points
are separated into 3 groups, points outside of the boundary,
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points on the boundary and points inside the boundary. The
three classes are labeled -1, 0 and 1 separately. In testing, the
points outside and inside the boundary are treated as the neg-
ative examples. Points on the boundary are considered as the
positive samples. The boundary points are determined by the
probability that the point is classified into outside, boundary
and inside points groups. The points with the highest proba-
bility for the boundary class are considered lying on the sur-
face. The classification accuracy result is shown in Table 1.

Method Mean | variance | round 1 | round 2 | round 3 | round 4 | round 5
Naive Bayes 0.4329 | 0.0027 | 38.63% | 48.19% | 49.59% | 40.23% | 39.80%
Neural Network | 0.7872 | 0.0256 | 75.59% | 93.98% | 92.23% | 77.49% | 54.32%
Nearest Neighbor | 0.3437 | 2.02E-4 | 32.39% | 35.02% | 36.09% | 33.58% | 34.79%
5 Nearest Neighbor | 0.2607 | 1.82E-4 | 23.83% | 26.41% | 27.48% | 26.19% | 26.44%
RBF Kernel 0.3302 | 4.17E-4 | 50.21% | 54.81% | 60.15% | 52.01% | 42.91%

Table 1: The liver prediction accuracy based on different
methods on 3 classes.

From Table 1, we can observe that after dividing the
training data into 3 classes, Neural Network can significantly
outperform all other classification methods. It shows us when
dealing with multi-class classification problems, Neural Net-
work can outperform most other classification algorithms,
especially when the data is not linearly separable. For this
reason, we select Neural Network to further represent organ
shapes.

Since we have the ground truth boundary points, we man-
ually create non-boundary points for the classification pur-
pose. All the reconstructed points on the boundary are scaled
up as the outside boundary class. Inside boundary points are
generated similarly by scaling down. The outside, inside and
the ground truth points (boundary) are shown in Fig.1, from
which we can see that the three groups of points wrap each
other well, implying they are easily separable.

Fig. 1: 3D point cloud for inside points (green), ground truth
points (blue) and outside points (red).

3. NEURAL NETWORK RBF SHAPE
REPRESENTATION

In Neural Networks (ANN), the perceptron is the basic pro-
cessing element which receives input from the neural network
environment and outputs to other perceptrons. For N inputs
and M outputs, the RBF network can be expressed as:
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(a) The ground truth of liver (b) The estimated liver boundary shape based
boundary. on RBF-Neural Network.

Fig. 2: The ground truth and the estimated boundary shape.
In Fig.2(b), green points are the points correctly appeared in
the estimated boundary. Red points represent points which
are ground truth points, but do not appear in the estimated
boundary.

where u is the input vector and ¢; is the center of Gaussian
or Multivariate Gaussian basis function. y; is the label for the

j th element. The normalization form is represented as the
following equation:
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The training step can be divided into two steps: first we need
to generate the centers of basis function from samples, then

optimize the weights of hidden output. For the first step, we
use k-means clustering to estimate the centers of basis func-
tion. Given input training patterns {u*, y*}, the second step
is to minimize the following objective function by choosing
optimized weights w.

y=f(u) = (2)
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In each step, the weights are modified by moving them in
the direction opposite to the gradient of the objective function.
; 0Jy(w, c)
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v is the learning rate. In this case, the training linear weights
w; becomes:
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The whole process is combined with back propagation to op-
timize the learning process. After learning, each RBF percep-

tron is associated with a weight. The combination of weighted
RBF perceptions can accurately represent shape.

4. EXPERIMENTS RESULT

4.1. Experiments on Liver Dataset

We test our method on public liver dataset [18]. Due to the
data availability limitation, we use 5-fold cross validation—
3/5 of the points are randomly picked for training and the rest
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Fig. 3: Our RBF liver comparison result: (a) The liver ground truth shape. (b) The liver boundary points classification result
by RBF-Neural Network. Red represents wrong classification points. Green are the correct classified points. (c) The liver
boundary points classification result by SVM-RBF [16]. (d) The liver shape estimated by RBF-Neural Network. (e) The liver

shape estimated by SVM-RBF [16].

2/5 of the data serves for the testing purpose. The estimated
boundary shape and the ground truth are presented in Fig.2.

From Fig.2, we can observe that almost all the ground
truth points are also shown on the Neural Network estimated
boundary, with few points missing in the estimated boundary.
The boundary estimated by RBF-Neural Network can accu-
rately describe the shape of the liver in a 3D environment.
The comparison between SVM-RBF [16] and RBF-Neural
Network is shown in Fig.6(b) and Fig.6(c).

Fig.6(b) and Fig.6(c) show that many boundary points
are incorrectly classified in SVM-RBF compared with RBF-
Neural Network. The points are almost all correctly classi-
fied by RBF-Neural Network. The learned shape is implic-
itly represented as the zero level set of the sum of weighted
RBFs. The shape comparison can be achieved by computing
the RBF parameters. To visualize the represented shape, we
uniformly generate points in a 3D space of 1000% 10001000,
[—49, 50] for each dimension. The points are generated in ev-
ery 0.1 step. We extract points that fit the learned shape repre-
sentation (meaning the points are on the boundary) and visu-
alize them. From Fig. 6(e) and Fig.6(d), we observe that the
liver boundary estimated by RBF-Neural Network is much
closer to the ground truth compared to SVM-RBF. Mean-
while, the RBF-Neural Network estimated boundary contains
much more points compared with SVM-RBF boundary, indi-
cating that more boundary points are obtained correctly. Our
method can accurately represent the liver shape. Using the
points that fit the learned representation, we build the dense
liver surface by Poisson reconstruction, as shown in Fig.4(a).
The surface of the liver is smooth based on the shape repre-
sented by RBF-Neural Network in a more compact way rather
than original point cloud. The Poisson reconstruction model
is used for quantitatively measuring the accuracy of the 3D
shape estimation. We register the estimated 3D shape to the
ground truth Poisson reconstruction model through iterative
closest point (ICP) [19] and record the distance of each point
on the estimated shape. The smaller distance, the more ac-
curate model estimated. We compare our RBF-Neural Net-
work method with the other state-of-the-art approaches (Pois-
son Shape [15], Total Bregman Divergence Shape [17] and
SVM-RBEF [16]) with average point distance error through the
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whole dataset, shown in Fig.4(b).

Average Point Distance Error

(@)
Fig. 4: (a) Shape of our RBF-neural network liver after Pois-
son reconstruction. (b) RBF-Neural Network average point
distance error compared with Poisson shape [15], Total Breg-
man Divergence shape [17] and SVM-RBF shape [16].

(b)

From Fig.4(b), our method can reduce 43.2%, 60.4% and
66.1% shape estimation error respectively based on SVM-
RBF shape (SVS) [16], Total Bregman Divergence method
[17] and Poisson shape [15], proving our method applicable
for shape representation task. More liver shape representation
result samples are provided in Fig. 6.

0.05

0.08

Fig. 5: 3D point cloud for inside poiﬁts (grgen), ground truth
points (blue) and outside points (red) for bunny model.

4.2. Experiments on Non-medical Shape Representation

We also conduct our experiments on Stanford bunny dataset
[20, 21] for testing our method’s effect on non-medical shape
representation. We still train our shape model through train-
ing classification model that distinguishes the points outside
the model, lying on the model and inside the model (Fig.5).
We further compare our RBF-Neural Network model shape
representation together with the SVM-RBF shape (Fig.7).
From Fig.7 , we can observe that our RBF-Neural Network
model significantly outperform SVM-RGB model on repre-
senting the bunny model shape in terms of accuracy. When
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Fig. 6: RBF liver comparison result from different views: (a, f) The liver ground truth shape. (b, g) The liver boundary points
classification result by RBF-Neural Network. (c, h) The liver boundary points classification result by SVM-RBF [16]. (d, 1)
The liver shape estimated by RBF-Neural Network. (e, j) The liver shape estimated by SVM-RBF [16].
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Fig. 7: Our RBF bunny comparison result: (a) The bunny ground truth shape. (b) The bunny boundary points classification
result by RBF-Neural Network. Red represents wrong classification points. Green are the correct classified points. (c) The
bunny boundary points classification result by SVM-RBF [16]. (d) The bunny shape estimated by RBF-Neural Network. (e)

The bunny shape estimated by SVM-RBF [16].

the model shape becomes more complex, the advantage is
even more obvious. Fig.7 also shows that our shape represen-
tation method is not only suitable for organ shape representa-
tion, but also ideal for representing any other complex model
shape.

SVMLRGF Our RBF Newral
Network

(b)

Fig. 8: (a) Poisson reconstruction model based on our RBF-
Neural Network for bunny. (b) Our RBF-Neural Network av-
erage point distance error compared with Poisson shape [15],
Total Bregman Divergence shape [17] and SVM-RBF shape
[16] on bunny model.

We also conduct experiments similar to Fig.4(b) on bunny
dataset. The calculated error distance is shown in Fig.8(b),
from which we can notice that when the model becomes more
complex, the advantage of our method is getting more ob-
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vious, resulting in much smaller error than other methods.
The Poisson reconstruction model of the bunny is shown in
Fig.8(a). We can see that even with complex changes, the
final representation shape is still accurate and smooth.

5. CONCLUSION

We make use of point cloud to learn neural network shape.
We test different classification methods on the task of organ
boundary prediction. Using the ground truth of the bound-
ary points, we create scaled boundaries for training classi-
fiers. We treat the points outside, inside and on the bound-
ary as 3 different classes for training the classifiers. Testing
results show that RBF-Neural Network dramatically outper-
forms other methods of classification. We make use of the
radial basis functions in the perceptrons and learn the final
shape representation as a combination of radial basis func-
tions. Gradient descent and back propagation methods are ap-
plied to update the weight of each perceptron. Experimental
results show that our method can not only accurately repre-
sent shapes of different organs, but also represent other com-
plex shapes in a high accuracy.
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