
ACTIVE LEARNING FOR MAGNETIC RESONANCE IMAGE QUALITY ASSESSMENT

Annika Liebgott⋆ Thomas K̈ustner⋆† Sergios Gatidis† Fritz Schick‡ Bin Yang⋆

⋆ Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany
† Department of Radiology, Universtity of Tübingen, T̈ubingen, Germany
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ABSTRACT

In medical imaging, the acquired images are usually analyzed by
a human observer and rated with respect to a diagnostic question.
However, this procedure is time-demanding and expensive. Further-
more, the lack of a reference image makes this task challenging.
In order to support the human observer in assessing image quality
and to ensure an objective evaluation, we extend in this paper our
previous no-reference magnetic resonance (MR) image quality as-
sessment system with an active learning loop to reduce the amount
of necessary labeled training data. We employ two different active
learning query strategies based on uncertainty sampling. Since the
classification task is performed on 2D image slices, but the human
observer labels complete 3D image volumes, we present a method
to select representative 3D images instead of independant 2D image
slices. The performance is evaluated onin-vivoMR image data.

Index Terms— active learning, blind image quality assessment,
machine-learning, magnetic resonance imaging

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a widely used imaging
modality in today’s clinical diagnostic. It offers a variety of imaging
possibilities, including different contrast mechanism or real-time
imaging, by which one can visualize both anatomical structure and
physiological functions inside the human body. The immense and
flexible MR sequence and reconstruction parametrization makes it
on one hand very tunable to specific needs and applications but de-
mands on the other hand a profound knowledge. Besides its various
advantages, MR images are often prone to artifacts originating from
hardware imperfections, like magnetic field inhomogeneities, or pa-
tient variabilities, like respiratory/cardiac movement. Furthermore,
nowadays enormous amounts of data are created per patient which
makes the diagnostic reading a very time-demanding task.
Up to day image quality evaluation has been a manual process which
mainly depends on human observers (HO) like trained physicians or
experienced radiologists, to determine the underlying image quality
with respect to a certain question is a very time consuming and
cost-intensive task. Moreover, the considered quality criteria need
to be clarified and ensured first according to specific conditions or
diagnostic questions.
In order to speed up this process, an automation can be achieved by
setting up a model observer (MO) [1] as a mathematical model for
the HO. In the case of an existing reference image as gold-standard,
several sophisticated methods have been established to quantify still
natural scene images [2, 3, 4] which have shown good performance
under certain quality metrics [5, 6]. Exploring known characteristics
of the human visual system [7] helps to understand how the HO
assess image quality [8, 9, 10]. Moreover, several approaches are

specialized on the quantification of type and degree of distortion
[11, 12] or are just trained on certain types of input data, i.e. the
generalization ability is rather low. Hence, despite these develop-
ments an objective and accurate measure for different kinds of input
images and distortions which better reflects the human perception is
still missing.
For MRI, reference/gold-standard images are often hard or even
impossible to acquire due to an additional required reference scan
and/or the difficulty in defining an appropriate gold-standard. In ad-
dition, (intensity-based) similarity/dissimilarity measures between
the to be evaluated image and the reference image cannot fully re-
flect complex image distortions or MRI artifacts [13] like motion
ghosting or subsampling aliasing. Instead of a reference image, a
supervised learning from HO labeling scores is thus a promising
approach to mimic the human perception. Therefore, in the MRI
environment, a blind/no-reference image quality assessment (IQA)
with supervised learning is of great interest.
In medical IQA, most works focus on automatic lesion detection as
a two-class problem [14, 15] or other supervised detection problems
[16, 17].
We proposed in [18] an automatic blind MR IQA based on super-
vised learning in order to predict a HO labeling of arbitrary input
images with unknown artifacts. Our system is trained on labels
derived from HO and on meaningful features reflecting the image
content including image distortions.
The overall accuracy is mainly determined by the features and the
amount of training data, i.e. HO labels. Hence, in this work we want
to address the problem of keeping the amount of necessary labels
low to save time and cost in the labeling procedure. We propose to
include active learning (AL) into our MR IQA system to support the
labeling by querying the HO with the most meaningful images.
Hoi et al. [19, 20] developed an AL framework for data with
content-based categories (e.g. does an image show thorax, abdomen
or foot), whereas we focus on quality-based categories of arbitrary
input images. In addition, their method does not take into account
that HOs often have to label 3D images composed of 2D slices and
labeled single 2D images. We will address this issue in this paper as
well and discuss how to select representative 3D images consisting
of meaningful 2D slices. Xue et al. [21] tried to omit HO labeling
completely by automatic learning the image quality from overlap-
ping image patches for simple image degradations. Since our type
of images including distortions and quality criterions are far more
complex we cannot spare the HOs if we want to mimic their quality
assessment. Lorente et al. [22] focused on the combination of AL
with a relevance vector machine in a four-dimensional feature space
whereas our framework uses a higher dimensional feature space
being able to reflect more complex image distortions.
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2. IMAGE QUALITY ASSESSMENT SYSTEM

The proposed active learning setup is an extension of the classifica-
tion system for MR IQA described in [18]. In Figure 1, the system
is depicted as well as the included active learning step. As input data
2D and 3D MR images are accepted with 3D images being sliced
into multiple 2D slices for further processing.
Each 2D image is represented by a feature vectorx̃. The features are
based on image characteristics like contrast, resolution, texture and
intensity. They add up to a total number of 2871 features. In order to
avoid overfitting, the dimension of the feature space is reduced, e.g.
by using principal component analysis, leading to a reduced feature
vectorx. Experiments have shown that for the data used in this study
a number of 36 principal components gives a good result.
In the classification step, the system uses an one-vs.-one multi-class
Support Vector Machine (SVM) which is implemented utilising the
LIBSVM library [23]. The employed soft-margin SVM uses a radial
basis function (RBF) kernel and 10-fold cross-validation to find the
optimum hyperplanes to separateK = 5 classes according to a 5-
point Likert scale.
As stated in [18], this framework was able to achieve an overall
test accuracy of91.2%. The aim of including active learning is
to achieve comparable results while using significantly less training
data. For this purpose, the training of the SVM was embedded in an
active learning loop.

3. ACTIVE LEARNING

The main idea of active learning is that the necessary amount of
labeled training samples can be reduced significantly by selecting
meaningful samples to label rather than labeling all examples. While
labeling all samples often leads to adding redundant information to
the training set, active learning uses certain query strategies to find
those samples which are expected to have the most positive influ-
ence on the performance of the classifier. There exist different AL
scenarios like membership query [24], selective sampling [25] or
pool-based AL [26]. We implemented the latter one. LetX be a
pool of samples andD the labeled training data. The goal is to keep
D as small as possible. So initially only a small number of labels
is used to train the classifier. The resulting low test accuracy is then
iteratively increased by selecting the most meaningful samples from

U = X \ D, which are then labeled by a HO and inserted intoD.
This procedure is repeated until a predefined stopping criterion is
reached, e.g. when the resulting test accuracy converges. It is gener-
ally possible to either select a single sample at each iteration or a set
L of several samples.

3.1. Query strategies

The success of active learning strongly depends on the way how to
choose the samples to be labeled. There are many different query
strategies which have been successfully used in the past for different
classification tasks like uncertainty sampling [26], query by com-
mittee [27], expected model change [28] or expected error reduction
[29]. It is important to choose a strategy suitable for the implemented
classifier and the data to be classified. In our study, we concentrated
on two uncertainty sampling strategies to investigate whether they
are useful in the MR IQA setup. Uncertainty sampling is an ap-
proach to select samples to query a HO based on how certain the
classifier is in his decision. There exist various ways to measure un-
certainty [30, 31, 32]. We implemented one based on the probability
of the class labelsyk ∈ {1, ...,K} and one which uses the distance
of the sample to the SVM hyperplanes.
The probability-based approach was proposed by Joshi et al. [33].
It uses probability estimates for multi-class SVM obtained through
pairwise coupling as described in [34]. Multi-class AL methods
based on class probability estimates often select those samplesxn

to be labeled for which the probabilityPk(xn) to belong to the most
probable classk is minimal. Another way is to choose the samples
for which the entropy of the distribution of class membership proba-
bility is maximal. A drawback of both methods is that they are easily
influenced by the probability distribution of non-important classes.
Instead, Joshi et al. proposed to minimize the difference between
the probabilitiesPk(xn) of the most andPl(xn) of the second most
probable class as a measurement for uncertainty. The setL of NL

samples to be labeled is created as

L =

NL⋃

n=1

{xn|min
n

(Pk(xn)− Pl(xn))}. (1)

Since their experimental results on different data sets look very
promising, we decided to investigate whether this query strategy is
also suitable for our application.
The second query strategy is based on the distanced between sam-
ples and the hyperplanes. The distanced(xn) of one feature vector
xn to the hyperplanef(xn) = 〈w, xn〉+ b is given by

d(xn) = ‖w‖−1

2 f(xn) (2)

wherew andb denote the primal parameters learned by the SVM. If
an RBF kernelk(xn, x) is used instead of a linear one,d(xn) can be
calculated by

f(xn) =

NSV∑

i=1

αiyik(xn, xi) + b (3)

with dual coefficientsαi and the corresponding support vectorsxi,
NSV is the number of support vectors. The distancesd(xn) are then
sorted in ascending order and the firstNL samples build the setL of
data to be labeled by an HO:

L = {xn|d(xn) < d(xm) ∀ xn ∈ yk} \ (O ∪ S) (4)

HereO denotes a set of outliers andS a group considering the slack
variables which will both be described in the following.
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Since outliers tend to lie close to hyperplanes or even on the wrong
side, a purely distance-based criterion might be likely to select those
and hence the performance of the classifier increases less or even
decreases. Thus, for each classyk we take the samples for which
the classifier assigned the same labelyk and calculate the Euclidean
distancedk(xn, µk

) = ‖xn − µ
k
‖ to the class centerµ

k
to identify

potential outliers. A samplexn qualifies as outlier, if it is farther
away than a predefined valueǫ compared to all other samplesxm

within the same classyk which are closer located to the class center,
with dk(xm, µ

k
) < dk(xn, µk

) ∀ xm 6= xn.

O ={xn|dk(xn, µk
)− dk(xm, µ

k
) > ǫ ∧

dk(xm, µ
k
) < dk(xn, µk

) ∀ xn ∈ yk, xm 6= xn} (5)

Outliers are discarded fromL. In SVM, the slack variables allow for
a certain amount of samples near the hyperplane to be categorized
into the wrong class. Since they should not be selected for labeling,
we compensate for this by defining a minimum distanceδ to the
hyperplane. Samples withd(xn) < δ are also not used to query the
HO

S = {xn|d(xn) < δ} (6)

3.2. Representative 3D image selection

Another important issue is that in our MR IQA system HOs are asked
to label 3D images instead of 2D image slices. Since our MR IQA
system should be able to rate both 2D and 3D images, the classifier is
trained using 2D images which can be partly 2D slices of 3D images.
The actual selected amount for labeling of 3D images can vary a lot
depending on how many of the chosen samplesxn, i.e. 2D image
slices, belong to different 3D images. Furthermore, the 2D slices at
the beginning and end of a 3D image can be of poorer quality, due to
e.g. infolding artifacts in slice direction or noise only content. They
should be discarded from AL because otherwise they would be more
likely selected for query due to their uncertainty. We address this
issue by not only considering the uncertainty ofxn ∈ L, but also
how many 2D slices of the same 3D image are selected and whether
they are at the beginning or end. Images with a higher number of
xn ∈ L are assigned a higher priority to be labeled. To account
for how uncertain the classifier is regarding categorizing eachxn,
the slices are additionally weighted according to their corresponding
uncertainty. If only slices from the beginning and/or end of a 3D
image are chosen, they are discarded fromL and the corresponding
3D image will not be part of the labeling query.

4. EXPERIMENTS AND RESULTS

The aim of this study is to reduce the labeling cost. LetNI be
the number of training samples in the initial training setDI . For
NL = |L| being the number of labeled samples per query andNq

being the number of queries, we getNAL = Nq · NL training sam-
ples for active learning. The total number of training samples inD is
ND = NI +NAL . This amount is to be minimized while maintaining
a high classification accuracy.

4.1. MR data sets

For our experiments we used 2D MR image slices taken from 3D
images of the thorax, abdomen and pelvis of 35 patients and healthy
volunteers, which were acquired using different imaging sequences,
contrast weights and various subsampling strategies with their cor-
responding reconstruction techniques. Those images were classified
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Fig. 2: Test accuracy for differentNL samples per query with ini-
tial training sizeNI = 200 and the probability-based approach.
The (min/mean/max) standard deviation is for (0/0.78/2.72),

(0.13/0.85/2.54) and (0/0.67/2.54).

into five classes according to the 5-point Likert scale by five HOs.
If the experts did not agree on one class, the median of the assigned
labels was used. The classes represent very high image quality (1),
high quality (2), medium quality (3), poor quality (4) and very poor
quality (5). The poolD of labeled data contains a total of2911 2D
slices taken from100 3D images.2038 samples were assigned to
the training setDtrain and873 to the test setDtest.
We have chosen the initial training setDI by randomly selectingNI

samples fromDtrain. The remaining samples fromDtrain were used
as the pool of unlabeled samplesU . The results are presented as
the average of 10 randomly initialized runs. In this, we were able
to compare the results of the classifier after training with the whole
training setDtrain (91.2% test accuracy) and with the combination of
DI and active learning.

4.2. Amount of data added in each iteration

The numberNL of samples selected to query the HO is an important
factor for how well AL improves the classifier. On one hand, a too
small value ofNL might not give a significant improvement. On the
other hand, labeling too many samples on each query is expensive.
It can also result in adding too much redundant information to the
training set and thus decrease the efficiency of AL. We therefore in-
vestigated the optimal value ofNL . For this purpose, we trained the
SVM with NI = 200 and different values ofNL . The results for
NL = 20, NL = 40 andNL = 60 are depicted in Figure 2.
The results show that in terms of the total number of training sam-
plesND,NL = 40 is a good choice when using the probability-based
method. ForNL = 20, the classifier needs much more iterations to
achieve a comparable accuracy which results in a high overall train-
ing time. A test accuracy over90% is first achieved after adding a
total of NAL = 840 samples inNq = 42 iterations. This results
in a total number ofND = 1040 labeled samples and a reduction
of 49% of training data. ForNL = 40 we needNq = 20 itera-
tions andND = 1000 which reduces the needed training samples by
51%. Adding more than40 samples per iteration does not result in a
further decrease of the total number of training samples.
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4.3. Amount of data used for initial training

Another important parameter is the sizeNI of the initial training
setDI . Figure 3 shows the resulting test accuracy forNI = 50,
NI = 200 andNI = 500 using the probability-based and the margin-
based approach. During each iteration,NL = 40 samples were
added.
For the probability-based strategy (see Figure 3a) andNI = 200,
we needed a total amount ofND = 1040 labeled samples to achieve
a test accuracy of over90%, as mentioned in the previous section.
UsingNI = 50 leads to a total number ofND = 1290 examples
to achieve a test accuracy> 90% (40% reduction compared to full
training set). ForNI = 500, the test accuracy after the initial training
is already high, but this leads to a slower improvement. To achieve
a test accuracy of over90%, ND = 1100 samples have to be labeled
which leads to a reduction of46%. Similar results can be observed
with the margin-based approach. The results can be seen in Figure
3b.
Our results show that the positive effect of AL occurs already with a
small amount of labeled data for initial training. But both too small
and too big values forNI lead to a slower improvement of the test
accuracy.

4.4. Probability-based vs. distance-based query

During our experiments, we came to the conclusion that the margin-
based query strategy slightly outperforms the probability-based one
(see Figure 3). Both of them give clearly better results than using
random samples fromU to query the HO. Therefore, both methods
help to reduce the labeling effort significantly.
In addition, we evaluated both strategies with respect to the distribu-
tion of the image class labels and their content (e.g. thorax, pelvis,
abdomen, etc.). Regarding the distribution of the classes of the se-
lected samples, our experiments showed that the margin-based ap-
proach strongly favours samples belonging to the most dominant
classes, whereas the probability-based method selects them more
equally from all classes. The impact of the correction sets for outlier
O and slack variablesS is for NI = 200, NL = 40 in the average
range of|O| = 11, |S| = 8 samples per query and has thus a posi-
tive impact on the selection.
In terms of image content, our experiments led to the conclusion
that both query strategies are not influenced by the content of an im-
age. We analyzed the chosen images for several different values of
NI andNL . Neither of both query strategies resulted in a different
distribution of the image content than choosing random samples.

5. CONCLUSION

In this paper, we propose a way to reduce the amount of labeled train-
ing data for a MR image quality assessment system by using active
learning. We implemented two strategies based on uncertainty (one
probability-based and one margin-based) to select samples to query
the human observer. Testing the system onin-vivoMR data revealed
that both strategies reduce the training data by roughly50% while
achieving comparable classification results to the previous system
setup without active learning. The margin-based approach slightly
outperforms the probability-based one. For the case of labeling a
complete 3D image, we also presented a selection strategy for choos-
ing the most meaningful 2D slices belonging to a few significant 3D
images. Overall, using active learning for an automatic magnetic
resonance image quality assessment system results in a reduced la-
beling effort for the human observer, saving time and cost.
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Fig. 3: Test accuracy for different initial training set sizes
NI with NL = 40 samples per query and both query
strategies. The (min/mean/max) standard deviation of (a)
is for (0.07/1.03/5.17), (0.13/0.85/2.54),

(0.07/0.56/2.07) and of (b) is for (0.07/1.02/5.17),
(0.13/0.82/2.8), (0.07/0.52/1.58).
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