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ABSTRACT 

In diagnostic imaging, recent studies have shown that 

retrieval of cases that are similar to the case being evaluated 

can boost its classification performance. In this work we 

investigate how to improve the utility of the retrieved cases 

by considering the similarity both in the image features and 

in the pathology when comparing the cases. To demonstrate 

the benefit of this retrieval strategy, we propose a boosted 

Adaboost classifier which can be adapted to the retrieved 

cases at a low computational cost. The proposed approach 

was tested on a set of 981 mammogram cases (449 

malignant, 532 benign). The results show that the retrieval-

boosted Adaboost classifier can significantly outperform its 

baseline counterpart, and that inclusion of pathology 

information (measured by the likelihood of malignancy) in 

the retrieval can further improve the classification accuracy.  

Index Terms— Image retrieval, computer-aided diagnosis 

(CAD), classification, Adaboost 

1. INTRODUCTION1 

One important early sign of breast cancer in women is the 

appearance of clustered microcalcifications (MCs) in 

mammograms [1]. MCs are tiny calcium deposits that 

exhibit as small bright spots in a mammogram image (e.g. 

Fig. 1). They can be found in both malignant and benign 

cases in screening mammography [2]. However, due to their 

subtlety in appearance in mammogram images, accurate 

diagnosis of MC lesions as benign or malignant is a very 

challenging clinical task for radiologists. In the literature, 

there have been significant efforts in development of 

computer-aided diagnosis (CADx) methods for 

differentiating between malignant and benign MC lesions [3-

4].  

In recent years, content-based image retrieval (CBIR) is 

increasingly explored as a CADx tool in diagnostic imaging 

[e.g. 5-7]. The goal of a CBIR system is to provide 

radiologists with examples of lesions (retrieved from a 

reference library of known cases) that are similar to the one 

being evaluated. Such an approach has been studied for 

different lesion types and imaging modalities [5-7]. 

Motived by the concept of CBIR, we have been 

developing a case-adaptive approach to CADx, in which the 
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classification of a query case is boosted by a set of similar 

cases [8-9]. This is different from the traditional approach in 

CADx, where a pattern classifier is first trained on a set of 

existing cases (called training samples), and subsequently 

applied for classification of future (unknown) cases. In our 

adaptive approach, for a case to be classified (i.e. query), we 

will first retrieve a set of known cases that are similar to the 

query (from an existing library), and then use these retrieved 

cases to adapt the classifier based on its classification 

accuracy on these similar cases. In essence, the retrieved 

cases are used to refine the decision function of the classifier 

in the local neighborhood around the query.  

Built on the previous studies [8-9], in this work we 

investigate how to improve the retrieval of similar cases 

such that their benefit on boosting the classification of a 

query is maximized. We conjecture that truly similar cases 

should be similar not only in their image features but also in 

pathology. Based on this conjecture, we devise a new 

retrieval strategy for similar cases, which will take into 

account both the image features and the pathology 

information of the cases.   

Furthermore, a potential drawback of using retrieval-

boosted classification is that the classifier needs to be 

retrained for each query based on the retrieved cases, which 

will inevitably increase the computational burden. This issue 

becomes particularly severe for a non-linear classifier such 

as SVM [8]. To address this issue, in this study we will 

develop our retrieval-boosted approach based on the widely 

used Adaboost, for which the added computational cost for 

updating the adaptive classifier can be rather low when 

decision stumps are used.  

2. METHODS  

Our retrieval assisted approach for boosting diagnosis can be 

stated as follows: for a given query case x under 

consideration, we first obtain a set of similar cases with 

known pathology from a reference library; then we make use 

of these retrieved cases to improve the classification 

accuracy of an existing baseline classifier on x.  

2.1 Similarity in pathology for retrieval 

In boosting the performance of a classifier, the retrieved 

cases play the role of refining the classifier function for a 

given query. Thus, how to retrieve these similar cases is 

essential to the classification on the query case. In our 
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previous study [9], the Euclidean distance was used for 

retrieving cases with image features similar to the query, the 

purpose of which was to improve the accuracy of the 

classifier in the local neighborhood around the query.  

In this study, we investigate how to improve the strategy 

for retrieving similar cases in order to maximize their benefit 

on boosting the classification on the query. While a simple 

metric such as the Euclidean distance is effective for 

retrieving cases that have similar quantitative image features, 

we find that cases having similar image features can often be 

different in pathology. This is because for a particular case 

not all the features can be discriminative between cancer and 

benign classes. This is also the reason that the problem of 

classification of MC lesions is fundamentally challenging.  

Given that cases with different pathology can have 

similar image features, we conjecture that those cases that 

are truly similar to the query should not only be similar in 

image features but also in pathology, and thus can be more 

useful for boosting the classifier on the query. Therefore, it 

would be desirable to retrieve those cases that have the same 

pathology as the query. Of course, this is impractical 

because our very purpose is to determine the pathology of 

the query (which is unknown).  

To deal with this difficulty, we will consider the 

following alternative approach in this study: instead of the 

true pathology, we first use a pre-trained classifier to 

estimate the likelihood of malignancy of the query case, and 

then use this estimated likelihood to retrieve similar cases 

for boosting the classifier on the query. That is, we seek to 

retrieve cases which are similar to the query not only in 

terms of their image features, but also in terms of their 

predicted disease likelihood.  

Based on the above consideration, in our experiments, 

we devised the following retrieval procedure for a given 

query x: first, compute the likelihood of malignancy of x by 

a pre-trained classifier, denoted by ( )g x ; second, retrieve 

2
r

N  cases that are closest to ( )g x  according to their 

predicted malignancy likelihood from the same classifier; 

third, select from these cases the top 
r

N  cases based on their 

Euclidean distance to the query x. The selected cases are 

used subsequently for boosting the classification on the 

query. 

2.2 Retrieval-boosted classification with Adaboost 

To demonstrate the use of our retrieval strategy for boosting 

the classification performance, in this study we consider the 

Adaboost classifier [10] owing to its computational 

advantage, as described subsequently.  

Adaboost is a boosting learning algorithm to form a 

committee-based decision function. Mathematically, the 

classifier function from Adaboost can be written as: 

1

( ) ( )
M

k k

k

f fα
=

=∑x x   (1) 

where  are a sequence of weak learners 

determined from training (whose individual performance is 

only slightly better than random guessing), and M is the 

number of them. In (1), the coefficients are 

weighting factors determined based on the accuracy of their 

corresponding classifiers ( )
k

f x  on the training samples (a 

higher weight is assigned for a classifier that is more 

accurate) [10]. Moreover, the individual classifiers ( )
k

f x  

are trained in a sequential manner such that subsequent 

classifiers are trained with more emphasis on those training 

samples that have been misclassified by their predecessors 

[10].   

Now consider a query MC lesion x . Let 

 be a set of 
r

N  retrieved cases 

for x . We propose to further adapt the committee classifier 

in (1) based on the accuracy of the individual weak 

classifiers on these retrieved cases. The idea is to place a 

higher weight on those weak classifiers that are more 

accurate on the retrieved cases, so as to improve the 

accuracy of the committee classifier in the local 

neighborhood of the query.  

Specifically, the classifier function in (1) is adapted as 

follows: 

   

f (x) = γ
k
α

k
f

k
(x)

k=1
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k

k=1
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where  are penalty factors introduced 

according to the accuracy of the weak classifiers ( )
k

f x on 

the retrieved cases, which is defined below.  

To quantify the accuracy of ( )
k

f x  on the set of retrieved 

cases, we use a weighted error which is defined as  

   

e
k

= β
r( )

I y
r( )

≠ f
k

x
r( )( )( )

r=1

N
r

∑ β
r( )

r=1

N
r
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where ( )I ⋅  is the indicator function, and the factors ( )rβ  are 

used to place more emphasis on cases that are more similar 

to the query x .  

Afterward, the penalty factors in (2) are calculated as  

exp k
k

e
γ

λ
 = − 
 

  (4) 

where λ  is a parameter controlling the sensitivity to the 

error term. In our experiment, λ was set at 0.5. At this 

setting, the value of 
k

γ  varies from 1 (when 0
k

e = ; no 

penalty) to 0.1353 (when 1
k

e = ; worst case).   

For the similarity factors 
( )rβ  in (3), in our experiments 

we used the Gaussian kernel function as in [9] to measure 

the similarity between a retrieved case and the query: 

( )
( ) 2

2

|| ||
exp

2

r
rβ

σ

 −
= −  

 

x x
   (5) 

where σ  is a scaling factor (which was set as the 10th 

percentile of the pair-wise distances of all the cases in the 

training set [9]).  

In this study, we use the decision stumps for the weak 

classifiers ( )
k

f x , which are commonly used for Adaboost 
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due to its simplicity [11]. Specifically, a decision stump has 

the following form: 

( ) ( )

( ) ( )

1
( )

1

k k

k

k k

x T
f

x T

≥
= 

− <
x    (6) 

where ( )k
x  is the associated decision feature and ( )k

T  is the 

decision threshold, both of which are determined during 

training.  

It can be readily seen that the computational complexity 

of the boosted classifier in (2) is mostly associated with the 

calculation of the error terms . With 

decision stumps as the weak classifiers, this takes only 

2
r

MN  comparison operations, ( )1
r

M N +  multiplication 

operations, and ( )1
r

M N −  summation operations. Thus, the 

retrieval-boosted Adaboost can be updated with very low 

complexity. 

3. EXPERIMENTS AND RESULTS 

3.1  Mammogram dataset  

In this study, we made use of a large set of mammogram 

cases collected from two different datasets. The first dataset 

was collected by the Department of Radiology at the 

University of Chicago, which includes 333 cases (161 

malignant, 172 benign). The second was from the DDSM 

dataset maintained at the University of South Florida, which 

includes 648 cases (288 malignant, 360 benign). Altogether, 

there are a total of 981 cases (449 malignant, 532 benign) in 

the collection, all containing MC lesions. All of the 

mammogram images were digitized with a spatial resolution 

of 0.1 mm/pixel. The use of a large number of cases is to 

ensure that there are enough cases available for retrieval.  

3.2  Experiment implementation 

In our implementation, the dataset was randomly divided 

into three subsets, denoted by A, B and C, respectively. 

Subsets A and B have 200 cases each (100 malignant, 100 

benign), and subset C has the remaining 581 cases (249 

malignant, 332 benign). Subset A was used for training and 

optimizing the baseline classifier, and subset B was used 

exclusively for testing the classification performance. Subset 

C was used together with A as the reference library of 

known cases.  

To quantify the MC lesions in the dataset, the individual 

MCs in each marked lesion was first detected by an SVM 

detector [12] with bi-thresholding scheme [13]; afterward, a 

set of descriptive features (consisting of 11 cluster features 

and 40 MC features [3, 9, 14-16]) was extracted to 

characterize the clustered MCs within each lesion. To 

determine the most salient features for discriminating 

between cancer and benign lesions, we applied a sequential 

forward selection procedure with logistic regression using 

the cases in subset A. This resulted in the following nine 

features: (1) scatterness of cluster [14], (2) eccentricity of 

cluster [14] (3) Fourier descriptor II of cluster, (4) moment 

feature 
3 1F F′ ′−  of cluster [15], (5) rotation invariant 

moment 
1I  of cluster [16], (6) the mean area of MCs in the 

cluster, (7) mean of the effective thickness of MCs in the 

cluster [3], (8) mean of the scatterness of MCs in the cluster, 

and (9) the standard deviation of the scatterness of MCs in 

the cluster.  

Afterward, the baseline Adaboost classifier was trained 

with the cases in subset A. To determine the number of weak 

classifiers M, we applied a four-fold cross-validation 

procedure, based on which the optimal 36M =  was chosen. 

This trained Adaboost classifier was used for subsequent 

boosting with our proposed retrieval strategy. Moreover, it 

was also used for predicting the likelihood of malignancy 

   
g(x) needed in the retrieval procedure.  

Considering that the boosted classifier made use of 

additional cases (retrieved from C) for training, for 

comparison purpose, we also tested the performance of the 

Adaboost classifier by training with all the cases in both 

subsets A and C. This represents the optimal performance 

that could be achieved by the baseline classifier when all the 

available cases (except the test cases) were used for training. 

To evaluate the performance of the classifiers, we 

conducted a receiver operating characteristic (ROC) 

analysis, which is now routinely used for performance 

evaluation in a classification task. The area under the ROC 

curve, denoted by AUC, is used to summarize the diagnostic 

performance. A larger AUC means better performance by a 

classifier.  

To suppress the effect of case distribution in the test set, 

we evaluated the classification performance for 20 different 

random splits of subsets B and C, and the average AUC 

values are obtained from these 20 splits.  

3.3 Results  

In Fig. 2 we show the classification performance results 

(measured by AUC) achieved by the Adaboost classifier 

when boosted with the proposed strategy (“Boosted– 

pathology”) when the number of retrieved cases 
r

N  is 

varied from 6 to 500. For comparison, we also show in Fig. 

2 the performance results achieved by the boosted classifier 

when the Euclidean distance was used for retrieval 

(“Boosted–Euclidean”). In addition, the perforamnce results 

are also shown for the baseline classifier, i.e., without 

boosting (“Baseline”), and the Adaboost classifier trained 

with all the avaiable cases in subsets A and C (“Adaboost-

all”). As can be seen, the boosted classifiers (Boosted–

pathology and Boosted–Euclidean) achieved noticeably 

higher AUC values than their baseline counterpart. 

Furthermore, the use of likelihood malignancy in the 

retrieval (Boosted–pathology) achieved further improvement 

in classification performance when compared with the use of 

the Euclidean distance. 

From Fig. 2, the best performance is achieved by 

Boosted–pathology with 20Nr = , for which AUC=0.7490. 

However, as the number of retrieved cases is further 

increased, the performance of the boosted classifiers 
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(Boosted–pathology and Boosted–Euclidean) starts to 

degrade. This is due to the fact that the number of similar 

cases for a given query is limited in the dataset and further 

retrieval of additional cases becomes no longer beneficial.  

Finally, it is interesting to note in Fig. 2 that the boosted 

classifiers even achieved improvement over the Adaboost 

classifier trained all the cases in both subsets A and C. This 

indicates the improvement by the boosted classifiers was 

attributed to the boosting strategy in refining the baseline 

classifier. 

4. CONCLUSION 

In this study we investigated how to use CBIR to boost the 

classification performance of a classifier by considering the 

similarity both in the image features and in the pathology for 

retrieving cases. We demonstrated the benefit of the 

proposed retrieval strategy with a boosted Adaboost 

classifier owing to its low computational cost. The 

evaluation results show that the retrieval-boosted approach 

can significantly outperform its baseline classifier and that 

inclusion of pathology information in the retrieval can 

further improve the classification accuracy. 
 

         
Fig. 1 A mammogram (left) and a magnified view of a 

lesions with clustered MCs (right). 

 
Fig. 2 Classification performance (AUC) achieved by the 

Adaboost classifier boosted with the proposed retrieval 

strategy (“Boosted–pathology”), and with retrieval using the 

Euclidean distanace (“Boosted–Euclidean”). For comparison, 

the results are also shown for the basedline Adaboost 

classifier (“Baseline”), and the Adabssot classifier trained 

with all the avaialble cases (“Adaboost-all”).  
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