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ABSTRACT

Parametric Bayesian spectral estimation methods have been
previously utilized to improve frequency resolution. Ultra-
sound signals have been tested in such methods resulting in
higher precision frequency detection compared to common
non-parametric spectral estimation methods based on the
Fourier transform. Such a technique using a reversible jump
Markov Chain Monte Carlo algorithm has been developed
to fully characterize signals and in addition to frequency, to
provide amplitude and noise estimation. The analysis of this
method is demonstrated with a real copper sphere ultrasound
scatter signal. Based on typical diagnostic ultrasound data
between 1.2 — 4.5 MHz the new spectral estimation achieves
110 kHz minimum frequency resolution. This is at least twice
the resolution of Fourier based methods, resulting in reveal-
ing new frequencies. The method may be used in the entire
range of ultrasound imaging modalities and may help provide
improved sensitivity, reproducibility and spatial resolution.

Index Terms— spectral estimation, frequency resolution,
Bayesian inference, ultrasound imaging, parametric model

1. INTRODUCTION

Medical ultrasound images are formed using signals that are
band-width limited [1]. This is due to the current transduc-
ers that are utilized both for the transmission and the recep-
tion of the ultrasound pulses and have typically 100% Full-
Width-Half-Maximum (FWHM). Short pulse duration is uti-
lized upon transmission in order to maximize spatial resolu-
tion of the image [2]. This combined with the usage of non-
parametric, mainly Fourier-based, spectral analysis results in
limited spectrum information [3].

Yan et al. have developed a novel parametric signal pro-
cessing method for the measured ultrasound echo signal anal-
ysis within a Bayesian framework [4—7]. This is based on a
reversible jump Markov Chain Monte Carlo (rjMCMC) algo-
rithm [8], and provides significant resolution gains in terms of
frequency detection [9—11]. This is accomplished by incorpo-
rating signal characteristics already known and by converting
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the problem of spectral estimation to the one of parameter
estimation. The technique can be expanded to include am-
plitude (and hence phase) and noise estimation, which will
enable thorough signal classification and open new opportu-
nities in its usage in ultrasound signal processing. The current
paper builds on the new spectral analysis tool [4—7] to achieve
signal reconstruction through statistical post-processing of its
output. A comparison with the classical Fourier Transform
[12] and an initial performance assessment are also presented
for a real ultrasound signal.

2. BACKGROUND

Parametric spectral estimation relies on the selection of a par-
ticular signal model which is assumed to generate all data
samples. The ultrasound pulses used in transmission consist
of several cycles of sinusoids [6, 13], therefore the received
responses can be represented as a sum of sines and cosines in
white Gaussian noise. Bayesian inference [14,15] is then used
to estimate the model parameters, which namely are the num-
ber of frequency components or model order (k), the frequen-
cies (wg), their amplitudes (ay) and finally the noise variance
(J,%). The set of unknown parameters when the model order
is also unknown is given by ¥ = (k, {wg, ax, 07 }) where and
as stated by Bayes theorem [16], the joint distribution of all
U parameters, conditioned on the observed data sequence y,
p(U | y) is defined as the joint posterior distribution, and can
be calculated as:

p()p(y | V)

p(¥|y) = o)

xp(W)ply [ ¥), (1)
where p(¥) denotes the joint prior distribution and p(y | ¥)
the likelihood function. p(y) is only a normalizing factor and
can be omitted. The likelihood function is based on the cur-
rent signal model where the noise is assumed to be indepen-
dent and evenly distributed [7]. A single prior is selected for
each unknown parameter [7, 17] and the joint prior distribu-
tion is just the product of all parameter priors since there is no
dependence between them.

The parameter set ¥ is then estimated by using MCMC
algorithms, which draw samples from the estimated distri-
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bution and seek to find statistical averages using the law of
large numbers [8, 16]. Yan et al. used a reversible jump
Markov Chain Monte Carlo [8] algorithm to compensate for
the number of frequency components (the model order) that
is initially unknown [18, 19]. The reversible jump offers the
ability to switch between different model orders from itera-
tion to iteration [8, 11]. Ultimately, the most likely model or-
der will be reached more frequently than the others based on
an acceptance probability, indicating the most probable num-
ber of frequency components in this signal processing frame-
work [5,20]. Detailed information on the algorithm can be
found in [7].

3. METHODS

3.1. Algorithm Development

For this frequency estimation technique where & is also un-
known, Bayesian analysis will lead to a highly multi-modal
posterior distribution [21]. This will make more difficult the
interpretation of the algorithm output and may even result in
some meaningless parameter estimates. Imposing limitations
such as k < 20 in [7] is a partial solution to this problem but
higher performance could be achieved if additional statistical
post-processing is applied to the jMCMC results. Here, an
attempt is presented to extract a reasonable summary of the
posterior distribution through clustering, outlier rejection and
signal comparison.

The algorithm is set to a large number of realizations
(Nyeqr) to ensure that there are sufficient data for analysis,
since many estimates are ignored during a single-case study.
A single realization also requires a high number of iterations
(Niter) until it converges to a specific model order. The
output data from all realizations are considered for the cur-
rent processing. They are separated based on the number of
identified frequencies, so that the marginal posterior distribu-
tions of parameters of interest become unimodal. Previous
allocation of estimated values, regardless of the model order,
in histograms is no longer required to extract the final esti-
mates [7]. In this work, realizations with the same number of
estimated parameters are grouped and ordered and then it is
straightforward to extract mean values from each frequency
and associated amplitudes. Amplitude estimates refering to
the same frequency (i.e. the first or the last) may contain val-
ues that differ greatly from realization to realization. For this
reason they undergo further processing with all values signif-
icantly higher than two times the standard deviation, being
removed. With all wy, and a; known, the estimated signals
for all the different k can be reconstructed. The parameter set
for which initial and reconstructed signal present the highest
correlation coefficient is considered to be the best approx-
imation. From the reconstructed signal’s power and with
the estimate of the noise variance, the Signal-to-Noise-Ratio
(SNR) can also be calculated by:

Py
SNR(dB) =10 logw F s (2)
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where P is the reconstructed signal power and P, is the noise
power (variance). The complete parametric spectral estima-
tion method as described in Section 2 including the supple-
mentary features of the current Section results in signal re-
construction that quantifies the method’s performance and en-
ables comparisons with classical non-parametric methods.

The jMCMC method requires a rough initial spectral esti-
mate on which the first iteration of each run will be based. The
multitaper method [3] that relies on the averaging of mod-
ified periodograms obtained by the same data to produce a
spectrum, has been used in the past [4]. Although it is gener-
ally accepted that it is superior than the single periodogram or
the Fast Fourier Transform (FFT) due to averaging, it is still
subject to the major limitations of all non-parametric meth-
ods [3]. Here, the Multiple Signal Classification (MUSIC)
algorithm [22] has also been used to provide a starting point
for the algorithm. MUSIC belongs to the sub-space meth-
ods, also known as high-resolution methods and is particu-
larly appropriate for signals consisting of sinusoids in noise.
The description matches with the nature of the under study
ultrasound signals and the signal model selected for the cur-
rent spectral estimation method. There is no specific advan-
tage noticed in favor of any of the two methods in terms
of reconstructed and initial signal resemblance. Yet for si-
nusoidal signals with closely spaced frequency components,
MUSIC parameters can be set accordingly to produce a spec-
trum that may help reducing the number of initial samples that
are discarded as inaccurate (burn-in period). This way esti-
mates convergence can be reached faster, reducing the com-
putational burden that is one of the major disadvantages of
this technique.

3.2. Ultrasound Data Acquisition

A modified ultrasound transducer (Sonos5500 Philips Medi-
cal Systems, Andover, MA, USA) was used to acquire echo
signals from solid copper spheres (SCSs) as described pre-
viously [23]. Briefly the scanner has a transmit and receive
bandwidth between 1.2 MHz and 4.5 MHz. Raw echo sig-
nals from the scatterers as shown in Fig. 1, are preamplified
and stored in a computer using 20 MHz sampling rate in A/D
convertion after receive. The experimental setup consists of a
water tank and tubing that allows the drop of SCSs by grav-
ity. Their path coincides to the centre of the ultrasound beam,
which is calibrated using a membrane hydrophone. The echo
acquisition was made at a distance between 7 — 8 cm from
the face of the transducer. The method is described in detail
in [23].

4. RESULTS AND DISCUSSION

The received response of a 6-cycle SCS signal, where the
transmit frequency is 1.62 MHz, is given as input to the rjM-
CMC sampler. The sinusoidal sphere signal is short with a
length that does not surpass 90 samples making the conven-
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Fig. 1. Comparison of the sphere signal with the recon-
structed one as obtained after the post-processing of the al-
gorithm’s output. The resemblance between the two is quan-
tified by the correlation coefficient that is measured to 0.987
if only the signal is considered (inside red dash/dotted line).

tional spectral analysis more difficult. The algorithm is set to
10000 iterations to ensure that convergence is achieved and to
5000 realizations. Each realization results in different number
of frequency components varying from 12 to 17 as shown in
Fig. 2 with numbers 13 and 14 being the most frequent ones.
Output frequencies from all realizations are put into the ag-
gregate histogram of Fig. 3 with a bin size of 50 kHz that also
defines the theoretical frequency separation limit (Af). This
is the minimum difference between neighboring frequencies
that can both be identified from the frequency spectrum. The
corresponding Af of the FFT which is the standard method to
extract the spectrum of a signal, is defined as the ratio of the
sampling frequency divided by the number of signals sam-
ples [12] that in this case it would be 20 MHz/90 samples =
222 kHz. However, it must be noted here that the ability
to differentiate two very closely spaced components also de-
pends strongly on relative amplitudes, which, in practice, sig-
nificantly reduces the above spectral resolution.
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Fig. 2. Histogram showing number of identified frequency
components for the 5000 realizations of the jMCMC method.

By following the steps as outlined in Section 3.1 for dis-
tinct k’s, all wyg, ar and J,% are extracted. The advantage of
the rjMCMC over non-parametric spectral estimation is that

905

1200

Bin width is set to 50kHz

10001

800

600

Bin counts

400}

200

1 1.5 2 25 3 3.5 4
Histogram bin centres [MHz]

Fig. 3. Histogram displaying the cumulative distribution of
the estimated frequency components from 5000 realizations.
A 50 kHz bin width was used. Nine peaks can be clearly dis-
tinguished while four of them may correspond to two peaks
merged to one.

it returns individual frequency and amplitude values indicat-
ing where the energy of a signal may be concentrated. Fig. 4
shows the FFT spectrum together with the results of the pro-
posed method. The method’s output presents good resem-
blance with the FFT where the spectrum peaks match with the
ones achieved by the parametric method. The 111 kHz dis-
tance between the 4t" and the 5! components is the smallest
one that is noticed and is therefore the actual minimum fre-
quency separation achieved. This demonstrates that there is
a minimum of 2-fold spectral resolution improvement com-
pared to the FT. An investigation on spectral resolution per-
formance of the method is beyond the scope of this paper but
needs to be addressed in the context of all the parameters that
affect it (eg. amplitude).

Further, there are 6 more instances where the distance be-
tween wy, and w41 does not exceed 190 kHz that couldn’t
have been identified by the FFT. These distances are all high-
lighted in Fig. 4 (oval shapes) where at the same time the FFT
presents one peak instead of two or two instead of three, etc.
There is also a more clear view compared to Fig. 3 regarding
the frequency locations and number. With the reconstructed
signal, the estimation accuracy can be checked by compar-
ing it with the sphere signal, providing the confidence that the
final estimates are correct. Fig. 1 shows the reconstructed sig-
nal plotted over the initial one. The correlation coefficient is
0.987 for the signal part between the red lines. The visual in-
spection shows the close similarity of the signals. The noise
variance is also estimated to 24.2 dB. Importantly, the recon-
structed signal in Fig. 1 is noise-free, and as a consequence a
correlation coefficient of 1 between the 2 signals is unrealis-
tic.

The above observations require synthetic signal confir-
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Fig. 4. Comparison of the FFT of the initial sphere sig-
nal with the output of the parametric spectral estimation.
The Bayesian method results in individual amplitude and fre-
quency values instead of a spectrum.

mation, and therefore a simplified typical ultrasound signal
is also studied. The signal includes only 3 frequency compo-
nents and assigned values are w, = {1.2,1.42,1.97} MHz,
ars = {3.7,1.1,1.7} for the sine amplitudes and ay,. =
{2.5,0.8,1.2} for the cosine amplitudes. To replicate the
conditions of the real signal acquisition, white Gaussian
noise with SNR= 25 dB was added to the signals and sam-
pling frequency and number of samples were kept the same.
The difference between wo and w; is almost the same as the
FT resolution limit (222 kHz). The corresponding algorithm
frequency estimates are wj, {1.2,1.42,1.97} MHz with
only several kHz deviation from the true values whereas es-
timated amplitudes are a, , = {3.6,1.1,1.7} and a, , =
{2.6,0.8,1.1} . The SNR is calculated to 24.4 dB and the
correlation coefficient between synthetic and reconstructed
signals is 0.995. In Fig. 5 the FFT of the synthetic signal
compared to the results of the proposed method are shown.
The FFT includes only two peaks while all 3 frequency com-
ponents have been identified by the parametric estimation.
The displayed amplitudes are extracted just by converting the
estimates from the trigonometric form to amplitude (aj) and
phase. The use of the synthetic signal here confirms the im-
provement provided by the new method. However, this is not
conclusive and a future extensive parametric study will help
extract the performance and limitations of this technique.
Considering that the FT is widely used in the post-
processing in nearly all ultrasound imaging modes, including
Doppler velocity measurements, elastography, contrast en-
hanced ultrasound (CEUS) and others, it is intriguing to
investigate the benefits of the new method in all these ar-
eas. An important consideration is the high computational
burden associated with this technique. Even supposing that
the MUSIC will provide a computational advantage over the
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Fig. 5. Similar to Fig. 4, the FFT of the synthetic signal is
compared with the output of the parametric spectral estima-
tion.

multitaper technique (a 1000 iteration burn-in period com-
pared to 3000 for 10000 iterations in total in this work), the
algorithm remains far from real time application, which is
often required in ultrasound imaging. Although more work
may achieve improved computational cost, it is also worth
investigating whether a large improvement in spectral clar-
ity helps provide such improvement that the offline option
should be taken into consideration. Here, linear scatter sig-
nals are used and similarly nonlinear contrast microbubble
signals can be used. Current CEUS pulse sequences provides
excellent linear tissue signal cancellation, but does very little
in enhancing microbubble signals. A study of microbubble
signature using a high resolution spectral analysis may aid in
the development of new coded sequences that help generate
higher resolution and SNR CEUS images. Such an advance
may be acceptable as an offline post-processing mode if it re-
ally helps reveal new diagnostic information or significantly
improves the sensitivity and specificity of existing diagnostic
examinations.

5. CONCLUSION

A parametric Bayesian spectral estimation technique that out-
performs conventional methods for ultrasound signal analysis
has been presented. This is achieved through an MCMC al-
gorithm where a reversible jump approach is employed since
the number of singal components is unknown. The algorithm
is based on prior knowledge of signals that are being ana-
lyzed, and statistical post-processing of its output. The re-
constructed signals are represented as a sum of sinusoids and
initial results on synthetic or real scatter signal show signifi-
cantly improved spectral resolution compared to the FT. This
method can be tested using linear and nonlinear (microbub-
bles) ultrasound scatter signals in order to inform future sig-
nal processing methods for ultrasound imaging.
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