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ABSTRACT

We develop a sparse image reconstruction method for Poisson-
distributed polychromatic X-ray computed tomography (CT)
measurements under the blind scenario where the material of the
inspected object and the incident energy spectrum are unknown.
We employ our mass-attenuation spectrum parameterization of
the noiseless measurements for single-material objects and ex-
press the mass-attenuation spectrum as a linear combination
of B-spline basis functions of order one. A block coordinate-
descent algorithm is developed for constrained minimization of
a penalized Poisson negative log-likelihood (NLL) cost func-
tion, where constraints and penalty terms ensure nonnegativity
of the spline coefficients and nonnegativity and sparsity of the
density-map image; the image sparsity is imposed using a con-
vex total-variation (TV) norm penalty term. This algorithm
alternates between a Nesterov’s proximal-gradient (NPG) step
for estimating the density-map image and a limited-memory
Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-
BFGS-B) step for estimating the incident-spectrum parameters.
We establish conditions for biconvexity of the penalized NLL
objective function, which, if satisfied, ensures monotonicity of
the NPG-BFGS iteration. We also show that the penalized NLL
objective satisfies the Kurdyka-Łojasiewicz property, which is
important for establishing local convergence of block-coordinate
descent schemes in biconvex optimization problems. Simulation
examples demonstrate the performance of the proposed scheme.

Index Terms—Beam hardening, computed tomography,
sparse signal reconstruction, polychromatic X-ray CT.

1. INTRODUCTION

Most polychromatic X-ray computed tomography (CT) recon-
struction methods assume known X-ray spectrum and materials
(i.e., known mass-attenuation function), with goal to maximize
the underlying likelihood function or its regularized version [1,
2]. However, the X-ray spectrum measurements based on the
semiconductor detectors are usually distorted by charge trapping,
escape events, and other effects [3] and the corresponding correc-
tion requires highly collimated beam and special procedures [4,
5]. Knowing the mass-attenuation function can be challenging as
well when the inspected material is unknown, or the inspected ob-
ject is made of compound or mixture with unknown percentage of
each constituent. A “blind” scenario for lognormal measurement
model with unknown incident spectrum and materials is consid-
ered in [6]; the methods in [6] use the standard photon-energy
parameterization, employ an excessive number of parameters,

This work was supported by the National Science Foundation under Grant
CCF-1421480.

and suffer from numerical instability [7]. Indeed, iteratively up-
dating excessive numbers of non-identifiable parameters does
not lead to robust reconstruction schemes.

In this paper, we adopt our parsimonious mass-attenuation
spectrum parameterization [8–10] and develop a blind sparse
density-map reconstruction scheme from measurements cor-
rupted by Poisson noise. The Poisson noise model is appropriate
for measurements from photon-counting detectors and a good ap-
proximation for the more precise compound-Poisson distribution
for measurements from energy-integrating detectors [11, 12].

Although we focus on Poisson noise and gradient-map im-
age sparsity in this paper, our framework is general and easy to
adapt to, for example, lognormal noise and image sparsity in 2D
discrete wavelet transform (DWT) domain, see [9, 13].

We introduce the notation: “�” is the elementwise version
of “�”, dxe is the smallest integer larger than or equal to x 2 R,

IŒ0;C1/.˛/ D

(
0; ˛ � 0

C1; otherwise
is the nonnegativity indi-

cator function for a real-valued vector ˛, dom.f / D fx 2

Rn j f .x/ < C1g is the domain of function f .�/, and aL.s/
is the Laplace transform of a vector function a.�/: aL.s/ DR

a.�/e�s� d�. Define also the set of nonnegative real num-
bers as RC D Œ0; C1/, the elementwise logarithm lnı s D

Œln s1; : : : ; ln sN �T , and Laplace transformaL
ı.s/ D

�
aL.sn/

�N

nD1

obtained by stacking aL.sn/ columnwise, where
s D Œs1; s2; : : : ; sN �T .

2. NOISELESS MEASUREMENT MODEL

Denote by N the total number of measurements from all projec-
tions collected at the detector array. For the nth measurement,
define its discretized line integral as �T

n ˛; stacking all N such
integrals into a vector yieldsˆ˛, whereˆ D Œ�1 �2 � � � �N �T 2

RN �p is the known projection matrix, also called Radon trans-
form matrix in a parallel-beam X-ray tomographic imaging sys-
tem. We apply our parsimonious parameterization for single-
material inspected objects where, thanks to the separability of
the attenuation, we combine the variations of the mass attenua-
tion and X-ray spectrum to construct mass-attenuation spectrum
ι.�/ [9, 10]. We expand ι.�/ as

ι.�/ D b.�/I (1a)

where b.�/ are known 1 � J vectors of B-splines of order one
(referred to as B1-splines) with knots �j D �0qj selected from
a growing geometric series with common ratio q > 1 (see [9,
eq. (10c)] for an explicit expression for our B1 splines), J is the
number of basis functions, � denotes the mass attenuation, and

898978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



�J C1�j0

�j0

š.�/

�

š.�/
b.�/I

Klow Kmid Khigh

Fig. 1: B1-spline expansion of mass-attenuation spectrum ι.�/.

I D ŒI1; I2; : : : ; IJ �T � 0 is an unknown J � 1 vector of
corresponding basis-function coefficients. The common ratio q
determines the resolution of the B-spline approximation and ex-
panding ι.�/ in B1-spline basis means that ι.�/ is modeled as
piecewise-linear with endpoints of linear segments at

�
Ij

�J

j D1
,

see Fig. 1.
We obtain the following expression for the N � 1 vector of

noiseless X-ray CT energy measurements [9, eq. (11b)]:

Iout.˛;I/ D bL
ı.ˆ˛/I (1b)

where ˛ D .˛i /
p
iD1 � 0 is an unknown p � 1 vector repre-

senting the 2D image that we wish to reconstruct and bL
ı.s/ is

an output basis-function matrix obtained by stacking the 1 � J
vectors bL.sn/ columnwise.

3. MEASUREMENT MODEL AND PENALIZED NLL
OBJECTIVE FUNCTION

For an N � 1 vector E D .En/N
nD1 of independent Poisson mea-

surements, the negative log-likelihood (NLL) in the form of gen-
eralized Kullback-Leibler divergence [14] is [see also (1b)]

L.˛;I/ D 1T
�
Iout.˛;I/ � E

�
�

X
n;En¤0

En ln
Iout

n .˛;I/

En

: (2)

We now express (2) as a function of˛withI fixed and vice versa,
which will be used to describe our estimation algorithm:

Lι.˛/ D 1T
�
ιLı.ˆ˛/ � E

�
�

X
n;En¤0

En ln
ιL

�
�T

n ˛
�

En

(3a)

LA.I/ D 1T .AI � E/ �
X

n;En¤0

En ln
ŒAI�n

En

(3b)

whereA , bL
ı.ˆ˛/ is defined in the case where ˛ is fixed. Here,

(3a) corresponds to the Poisson generalized linear model (GLM)
[15] with design matrix ˆ and link function equal to the inverse
of ιL.�/ and (3b) corresponds to the Poisson GLM with design
matrix A and identity link.
Theorem 1. The NLL (2) is biconvex with respect to ˛ and I in
the following set:˚

.˛;I/

ˇ̌̌̌
ˇIout.˛;I/ �

.qj0 � 1/2

q2j0 C 1
E; I 2 A; ˛ 2 Rp

C

	
(4a)

which bounds Iout
n .˛;I/=En from below for all n. Here, we con-

strain the region of allowed I to

A D

n
I 2 RJ

C

ˇ̌
I1 � I2 � � � � � IJ C1�j0

; Ij0
� � � � � IJ ;

and Ij � IJ C1�j0
; 8j 2 ŒJ C 1 � j0; j0�

o
(4b)

which imposes monotonicity of the mass-attenuation spectrum
ι.�/ in low- and high-� regions determined by the constant j0 �

d.J C1/=2e and also that the mid-� region has higher spectrum
than the low-� region, see Fig. 1.

Proof: We outline main steps of the proof, see [9] for de-
tails. We first prove that the region specified by (4a) is biconvex
with respect to ˛ and I . We then show that the NLL LA.I/ is
convex over I simply by taking the second derivative of LA.I/
and verifying that the resulting Hessian matrix is always positive
semidefinite. Finally, we show that the Hessian matrix of Lι.˛/

has the form ‰ƒ‰T where ƒ is a diagonal matrix whose ele-
ments are nonnegative in the region (4a).

In practice, the X-ray spectrum �."/ starts at the lowest ef-
fective energy that can penetrate the object, vanishes at the tube
voltage (the highest photon energy), and has a region in the cen-
ter higher than the two ends; see Fig. 2b. When the support of
�."/ is free of K-edges, the mass-attenuation coefficient �."/ is a
monotonic function of "; thus ι.�/ as a function of � has similar
shape as �."/ as a function of ", which justifies assumption (4b).
If a K-edge is present within the support of �."/, it is difficult to
infer the shape of ι.�/. In most cases, (4b) holds.

Our goal is to compute penalized maximum-likelihood esti-
mates of the density-map and mass-attenuation spectrum param-
eters .˛;I/ by solving the following minimization problem:

min
˛;I

f .˛;I/ (5)

where

f .˛;I/ D L.˛;I/ C ur.˛/ C IŒ0;C1/.I/ (6a)

r.˛/ D

pi
iD1

s X
j 2Ni

.˛i � j̨ /2 C IŒ0;C1/.˛/ (6b)

are the penalized NLL objective function and the density-map
regularization term that enforces nonnegativity and sparsity of
the signal ˛ in the total-variation (TV) domain. Here, u > 0 is
a scalar tuning constant and Ni is index set of neighbors of ˛i ,
where the elements of ˛ are arranged to form a 2D image [16].

3.1. Properties of the objective function f .˛;I/
Since r.˛/ in (6b) and IŒ0;C1/.I/ in (6a) are convex functions
of ˛ and I for all ˛ � 0 and I � 0, the following holds:

Corollary 1. The objective f .˛;I/ in (6a) is biconvex with re-
spect to ˛ and I under the conditions specified by Theorem 1.

We now establish that the objective function (6a) satisfies the
Kurdyka-Łojasiewicz (KL) property provided that the incident X-
ray source is nonzero.

Theorem 2 (KL Property). The objective function f .˛;I/ sat-
isfies the KL property in any compact subset C � dom.f /.

Proof: We show that the NLL in (2) is real-analytic for
all ˛ in a compact subset C in the domain of f .˛;I/; both r.˛/
in (6b) and IŒ0;C1/.I/ are semialgebraic functions. The sum of
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real-analytic and semi-algebraic functions is sub-analytic, which
implies the KL property of f .˛;I/ [17, Sec. 2.2]. See [9] for
details.

4. MINIMIZATION ALGORITHM

Iteration i for minimizing (6a) updates ˛ and I alternatively:
1) (NPG) Set themass-attenuation spectrum ι.�/ D b.�/I.i�1/,

treat it as known, and descend the regularized NLL function
f .˛;I.i�1// D Lι.˛/ C ur.˛/ [see (3a)] by applying a
Nesterov’s proximal-gradient (NPG) step [18, 19] for ˛:

� .i/
D

1

2

�
1 C

q
1 C 4

�
� .i�1/

�2

�
(7a)

x̨
.i/

D ˛.i�1/
C

� .i�1/ � 1

� .i/

�
˛.i�1/

� ˛.i�2/
�

(7b)

˛.i/
D arg min

˛

1

2ˇ.i/



˛ � x̨
.i/

C ˇ.i/
rLι

�
x̨

.i/
�

2

2

C ur.˛/ (7c)

where the minimization (7c) is computed using an inner it-
eration that employs the TV-based denoising method in [16,
Sec. IV] andˇ.i/ > 0 is an adaptive step size chosen to satisfy
the majorization condition:

Lι

�
˛.i/

�
� Lι

�
x̨

.i/
�

C
�
˛.i/

� x̨
.i/

�T
rLι

�
x̨

.i/
�

C
1

2ˇ.i/



˛.i/
� x̨

.i/


2

2
(7d)

using a patient adaptation scheme that aims at finding the
largest ˇ.i/ that satisfies (7d), see [20] for details. We se-
lect the initial step size x̌.0/ using the Barzilai-Borwein (BB)
method [21] and apply the function restart [22] to restore the
monotonicity and improve convergence of NPG steps.

2) (BFGS) Set the design matrix A D bL
ı

�
ˆ˛.i/

�
, treat it

as known, and minimize the regularized NLL function
f

�
˛.i/;I

�
with respect to I , i.e., solve [see (3b)]

I.i/
D arg min

I�0
LA.I/ (8)

using the inner limited-memory Broyden-Fletcher-Goldfarb-
Shanno with box constraints (L-BFGS-B) iteration [23], ini-
tialized by I.i�1/.

Iterate between Steps 1 and 2 until the relative distance of consec-
utive iterates of the density map ˛ does not change significantly:

˛.i/

� ˛.i�1/




2
< �



˛.i/




2
(9)

where � > 0 is the convergence threshold. The convergence
criteria for the inner TV-denoising and L-BFGS-B iterations are
chosen to trade off the accuracy and speed of the inner iterations
and provide sufficiently accurate solutions to (7c) and (8).

We refer to the iteration between Steps 1 and 2 as the NPG-
BFGS algorithm: it is the first physical-model–based image re-
construction method for simultaneous blind (assuming unknown
incident X-ray spectrum and unknown materials) sparse image
reconstruction and mass-attenuation spectrum estimation from
polychromatic measurements. If the mass-attenuation spectrum
ι.�/ is known and we iterate Step 1 only to estimate the density-
map ˛, we refer to this iteration as the NPG algorithm (known
ι.�/).

If we do not apply the Nesterov’s acceleration (7a)–(7b)

(a)
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Fig. 2: (a) Density-map image and (b) mass attenuation and inci-
dent X-ray spectrum as functions of the photon energy ".

and use only the proximal-gradient (PG) step (7c) to update the
density-map iterates ˛, i.e., assign x̨

.i/
D ˛.i�1/ instead of

(7b), we refer to the corresponding iteration as the PG-BFGS
algorithm.

Remark 1 (Monotonicity). Under the condition (4a) of Theo-
rem 1, the NPG-BFGS iteration with function restart is mono-
tonically non-increasing:

f
�
˛.i/;I.i/

�
� f

�
˛.i�1/;I.i�1/

�
(10)

for all i .

Proof: Step 1 is monotonic thanks to either the function
restart or the convexity of f .˛;I/ over ˛ combined with the
condition (7d), Step 2 is monotonic by (8). Hence, each step of
the NPG-BFGS iteration is monotonic.

Based on Theorem 2, we establish critical-point convergence
of PG-BFGS using arguments along the lines of [17], see [9, Th.
3].

5. NUMERICAL EXAMPLES

Consider reconstruction of the 512 � 512 image in Fig. 2a of an
iron object with density map ˛true. We generated a fan-beam
polychromatic sinogram, with distance from X-ray source to the
rotation center equal to 2000 times the pixel size, using the in-
terpolated mass attenuation �."/ of iron [24] and incident spec-
trum �."/ from tungsten anode X-ray tubes at 140 keV with 5%
relative voltage ripple [25], see Fig. 2b. Our simulated approxi-
mation of the noiseless measurements uses 130 equi-spaced dis-
cretization points over the range 20 keV to 140 keV. We sim-
ulated independent Poisson measurements .En/N

nD1 with means
.E En/N

nD1 D Iout.˛;I/. We mimic real X-ray CT system cali-
bration by scaling the projection matrix ˆ and the spectrum �."/
so that the maximum and minimum of the noiseless measure-
ments .E En/N

nD1 are 216 and 20, respectively. Here, the scales of
ˆ and �."/ correspond to the real size that each image pixel rep-
resents and the current of the electrons hitting the tungsten anode
as well as the overall scanning time.

We use the relative square error (RSE), 1�

�
y̨

T
˛true

ky̨k2k˛truek2

�2

as
the reconstruction performance metric; RSE is invariant to scal-
ing y̨ by a nonzero constant, which is needed because the magni-
tude level of ˛ is not identifiable by our blind approach [8–10].
We compare
i) our

• NPG-BFGS method with J D 30 spline basis functions
spanning three orders of magnitude,
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RSE=11.85%

(a) FBP

RSE=7.12%

(b) linearized FBP

RSE=0.55%

(c) linearized BPDN

RSE=0.21%

(d) NPG (known ι.�/)

RSE=0.19%

(e) NPG-BFGS

Fig. 3: Reconstructions from 60 projections.
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Fig. 4: Average RSEs as functions of the number of projections.

• NPG for known mass attenuation spectrum ι.�/
(Matlab implementation at github.com/isucsp/imgRecSrc);

ii) linearized basis pursuit denoising (linearized BPDN), which
applies the NPG approach to solve the basis pursuit denoising
(BPDN) problem [16]: min˛ 0:5ky �ˆ˛k2

2 Cu0r.˛/, where
y D

�
ιL

��1

ı
.E/ are the linearized measurements and u0 > 0

is the regularization constant,
iii) the traditional filtered backprojection (FBP) method without

[26, Ch. 3] and with linearization [27], i.e., based on the ‘data’
y D �lnı E and y D

�
ιL

��1

ı
.E/, respectively.

For all methods that use sparsity and nonnegativity regulariza-
tion (NPG-BFGS, NPG, and linearized BPDN), the regulariza-
tion constantsu andu0 have been tunedmanually for best average
RSE performance. All iterative algorithms employ the conver-
gence criterion (9) with threshold � D 10�6 and the maximum
number of iterations set to 4000. We initialize iterative recon-
struction schemes with or without linearization using the corre-
sponding FBP reconstructions.

The non-blind linearized FBP, NPG (known ι.�/), and lin-
earized BPDN methods rely on knowledge of ι.�/ [which re-
quires knowledge of the incident spectrum of the X-ray machine
and mass attenuation (material)], which we computed using (1a)
with I equal to the exact sampled ι.�/ and J D 100 spline
basis functions spanning three orders of magnitude. Neither
FBP nor NPG-BFGS assume knowledge of the mass-attenuation
spectrum ι.�/: FBP ignores the polychromatic-source effects
whereas NPG-BFGS corrects blindly for these effects without
knowledge of ι.�/.

Fig. 3 shows the reconstructions from 60 equi-spaced fan-
beam projections with spacing 6ı, using one realization of noisy

Poisson measurements. The FBP reconstruction in Fig. 3a ex-
hibits both aliasing and beam-hardening (cupping and streaking)
artifacts. Linearized FBP, which assumes perfect knowledge
of the mass-attenuation spectrum, performs better than FBP, re-
moves the beam-hardening but retains the aliasing artifacts, and
yields noisy reconstruction due to the zero-forcing nature of lin-
earization, see Fig. 3b. Thanks to enforcing the nonnegativity and
sparsity constraints, linearized BPDN removes the aliasing arti-
facts and the negative signal components, and achieves a smooth
reconstruction with a 0.55% RSE. NPG-BFGS and NPG account
for both the polychromatic X-ray source and Poisson noise and
handle the noisy measurements in a statistically optimal manner,
thereby achieving the best reconstructions, see Figs. 3d and 3e.

Fig. 4 shows the average RSEs (over 5 Poisson noise re-
alizations) of different methods as functions of the number of
fan-beam projections in the range from 0° to 359°. Average
RSEs of the methods that do not assume knowledge of the mass-
attenuation spectrum ι.�/ are shown using solid lines whereas
dashed lines represent methods that assume known ι.�/. Red
and blue colors present methods that do and do not employ
signal-sparsity regularization, respectively. FBP ignores the
polychromatic nature of the measurements and consequently per-
forms poorly and does not improve as the number of projections
increases. Linearized FBP, which assumes perfect knowledge
of the mass attenuation spectrum, performs better than FBP, as
shown in Fig. 4. Linearized BPDN attains up to 20 times better
RSE than linearized FBP thanks to the nonnegativity and sparsity
that it imposes on the signal; however, the zero-forcing nature
of the linearization process leads to noise enhancement, which
ultimately limits the reconstruction performance of linearized
BPDN. As expected, NPG is slightly better than NPG-BFGS
because it assumes knowledge of ι.�/. NPG and NPG-BFGS
attain RSEs that are 24% to 37% that of linearized BPDN, which
can be attributed to optimal statistical processing of the proposed
methods, in contrast with suboptimal linearization. It is remark-
able that the blind NPG-BFGS method effectively matches the
performance of NPG (known ι.�/).

See [8, 9] for reconstructions using real X-ray CT data.

6. CONCLUSION

We developed a sparse polychromatic X-ray CT reconstruction
method from Poisson measurements that requires no additional
information than the conventional FBP method, and yet is ca-
pable of correcting beam-hardening and aliasing artifacts. We
established conditions for biconvexity of the underlying penal-
ized negative log-likelihood functionwith respect to the unknown
density-map and mass-attenuation spectrum parameters, and an-
alyzed properties of the proposed reconstruction scheme.
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