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ABSTRACT
This paper proposes a novel super-resolution method that
exploits the sparse representation and non-local similarity
of patches for the effective reconstruction of images. High-
resolution images are reconstructed from low resolution ob-
servations with an efficient technique based on the alternating
direction method of multipliers (ADMM). A robust iterative
back-projection approach is used in a post-processing step
to remove residual noise and artifacts in the reconstructed
image. Experiments on benchmark medical images illustrate
the advantage of our method, in terms of PSNR and SSIM,
compared to state of the art approaches.

Index Terms— Non-local sparse representation, non-
local embedding, improved IBP, high-resolution image

1. INTRODUCTION

Medical imaging provides a non-invasive way to obtain rich
information about various anatomical structures in the body
[1–3]. The acquisition of high-resolution and noise free med-
ical images is essential to many post-processing steps, such
as the segmentation and registration of structures in these im-
ages. Having high quality images is also critical to the auto-
mated detection and diagnosis of various diseases. However,
due to limitations of the imaging hardware, quality-limiting
factors (e.g., signal to noise ratio) and time requirements, ob-
taining such images can be challenging.

An alternative solution is to use image processing tech-
niques to enhance the spatial resolution and general quality
of images. To reach this goal, conventional interpolation
methods are widely used. However, these methods may blur
sharp edges representing the contour of anatomical structures,
introduce ringing artifacts, and fail to recover fine details in
the image [1]. A data-driven solution to this problem is
super-resolution (SR), which aims at reconstructing a high-
resolution (HR) image from a low-resolution (LR) one. SR
methods can be divided in two broad categories: single im-
age algorithms [2, 4, 5], which recover the HR image from a
single LR image, and multi-frame algorithms [6,7] which use
different LR observations of an HR image to reconstruct this
image.

Formally, the process of acquiring LR images y ∈ RNl

from an HR image x ∈ RNh can be formulated as

y = DHx+ v (1)

where, H ∈ RNh×Nh is a blurring operator, D ∈ RNl×Nh

is a down-sampling operator, and v is additive noise. In this
paper, we suppose the noise to be zero-mean Gaussian, and
the blur kernel to be the Dirac delta function (i.e., H is the
identity matrix). In this case, the single image SR problem
can be defined as finding the HR image x̂ such that

x̂ = argmin
x

1

2
‖y −Dx‖22 + λR(x). (2)

In this formulation, R(x) is a regularization term encoding
prior knowledge on the HR image, and λ is used to balance
the fidelity term and regularization term.

In recent years, sparse representation models have shown
promising results for improving the robustness of super-
resolution methods [4, 8, 9]. Such models are based on the
hypothesis that small patches of

√
M ×

√
M pixels in an

image x can be approximated as a sparse linear combination
of atoms within a dictionary Φ ∈ RM×K , where K in the
number of atoms [4]. Denote as pi the patch corresponding
to pixel i in x (patches corresponding to different pixels may
overlap), and let Ri ∈ RM×Nh be the patch extraction matrix
such that pi = Rix. Using the l1-norm to model sparsity, the
sparse representation formulation of SR corresponds to the
following problem:

argmin
α·,x

1

2
‖y −Dx‖22 + λ

Nh∑
i=1

‖αi‖1

s.t. Rix = Φαi, i = 1, . . . , Nh. (3)

Reconstruction methods can often be improved by adding
non-local self-similarity constraints [4, 10–14]. The idea be-
hind this approach is that patches in an image are similar to
other patches in the same image, due to the regularity and
recurrence of structures (e.g., see Figure 1). Formally, a
patch pi can be approximated as a convex combination of S
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non-local similar patches psi :

pi ≈
S∑
s=1

ωsi p
s
i , s.t

S∑
s=1

ωsi = 1, ωsi ≥ 0, ∀s. (4)

The relation between similar patches, encoded in weights ωsi
can be used to impose constraints on the reconstructed HR
image [10–12] or the sparse codes [4, 13, 14].

Fig. 1. Example of similar patches in an image.

In this paper, we propose a novel single-image super-
resolution method using non-local sparse representation and
iterative back-projection. The detailed contributions of this
work are the following:

• An efficient algorithm, based on the alternating direc-
tion method of multipliers (ADMM) [15], is presented
for the reconstruction of HR images. As other sparse
representation methods, the proposed approach uses a
compact dictionary to effectively model the subspace of
image patches and regularizes the reconstruction by im-
posing sparsity constraints. Our approach further reg-
ularizes the reconstruction process by adding non-local
similarity constraints on the patches and their sparse
codes.

• Super-resolution methods can lead to residual noise and
reconstruction artifacts in the form of ringing patterns.
To remove such artifacts, we enhance our model by in-
corporating a post-processing step based on robust iter-
ative back-projection (IBP) [16].

In the next section, we present the proposed SR model, the
ADMM approach used to recover the HR image, and the IBP
post-processing step to remove residual noise and artifacts.

2. THE PROPOSED METHOD

The workflow of our SR method is composed of three steps:
1) computation of non-local similar patches, 2) HR image re-
covery using sparse representation and non-local embedding,
and 3) post-processing removal of artifacts using IBP. The fol-
lowing subsections describe each of these steps.

2.1. Computation of non-local similar patches

To compute the non-local embedding of patches, we first ap-
proximate the HR image from the LR one using bicubic in-
terpolation. We then find for each HR patch pi the S most

similar patches in the image based on the weighted Euclidean
distance. To speed-up this process, the search is limited to
a small window around target pixel i, for instance, of size
100 × 100 pixels. The process can be further accelerated by
finding a shortlist of candidates in the LR image [17].

Based on Eq. (4), a patch pi is then encoded as a convex
combination of its similar patches psi . Let Pi = [p1i , . . . , p

S
i ],

the non-local similarity weights of pi can be computed by
solving the following constrained least-square problem:

argmin
ωi

1

2
‖pi − Piωi‖22, s.t. ‖ωi‖1 = 1, ωi ≥ 0. (5)

Note that, since S is typically small, the solution can be ob-
tained rapidly using a standard quadratic program solver. The
non-local embedding of all patches can be represented using
a matrix Ω such that

Ωi,j =

{
ωsi , if pj is the s-th non-local similar patch of pi
0, otherwise.

(6)
Matrix Ω is used to constrain the recovered HR image, as
described in the following subsection.

2.2. Image recovery via non-local sparse representation

Our super-resolution approach is related to the sparse repre-
sentation model proposed by Dong et al. in [4]. As their
model, we use similarities between non-local patches, as de-
fined in matrix Ω, to constrain their sparse code representa-
tion. Let P = [p1, . . . , pNh

] be the matrix of all patches,
where pi = Rix. From Eq. (4), we know that P ≈ PΩ>.
Moreover, since the sparse representation of each patch pi is
Φαi, we also have that P = ΦA, whereA = [α1, . . . , αNh

] is
the matrix of all sparse codes. Combining these two relations
gives a non-local embedding of sparse codes, ΦA ≈ ΦAΩ>,
which is used to enhance the standard sparse representation
SR model of Eq. (3) as follows:

argmin
A, x

1

2
‖y −Dx‖22 + λ‖A‖1 +

γ

2
‖ΦA− ΦAΩ>‖2F

s.t. Rix = Φαi, i = 1, . . . , Nh. (7)

Parameters λ ≥ 0 and γ ≥ 0 control the trade-off between the
sparsity of patches in the dictionary space and their non-local
embedding.

An optimization strategy based on the alternating direc-
tion method of multipliers (ADMM) [15] is used to recover
the sparse codes A and HR image x. The general principle of
this method is to split a hard to solve problem into easier to
solve sub-problems, the solutions of which are connected us-
ing auxiliary variables. In our case, we add auxiliary variables
Y , Z and reformulate the problem as

argmin
A, Y, Z, x

1

2
‖y −Dx‖22 + λ‖Y ‖1 +

γ

2
‖Z − ZΩ>‖2F

s.t. Rix = Φαi, i = 1, . . . , Nh, Y = A, Z = ΦA. (8)

The constraints are then moved to the cost function by added
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three augmented Lagrangian terms with multipliers U, V,W ,
and parameters µ1, µ2, µ3 ≥ 0:

argmin
A, Y, Z, x,
U, V,W

1

2
‖y −Dx‖22 + λ‖Y ‖1 +

γ

2
‖Z − ZΩ>‖2F

+
µ1

2

Nh∑
i=1

‖Rix− Φαi + ui‖22 +
µ2

2
‖A− Y + V ‖2F

+
µ3

2
‖ΦA− Z +W‖2F . (9)

In practice, µ1, µ2 and µ3 affect the convergence of the al-
gorithm, both in terms of speed and optimality. Too large
values will lead to a fast convergence but a sub-optimal solu-
tion, while too small ones give a slow convergence. However,
ADMM methods are not overly sensitive to those parameters,
and little tuning is required. As in standard ADMM methods,
we update variables A, Y , Z, x, U , V and W , alternatively,
until convergence is reached.

2.2.1. Updating x

Image x is updating by solving the following problem:

argmin
x

1

2
‖y−Dx‖22 +

µ1

2

Nh∑
i=1

‖Rix−(Φαi−ui)‖22. (10)

This corresponds to an unconstrained quadratic program, hav-
ing a closed form solution

x =
(
D>D+µ1

Nh∑
i=1

R>i Ri

)−1(
D>y+µ1

Nh∑
i=1

R>i (Φαi−ui)
)

(11)
Since matrix M = D>D + µ1

∑Nh

i=1R
>
i Ri is fixed, we can

use Cholesky factorization in a pre-processing step to decom-
pose it as M = CC>, where C is lower triangular. The HR
image can then be updated as

x = C> \
(
C \

(
D>y + µ1

Nh∑
i=1

R>i (Φαi − ui)
))
, (12)

where operator \ corresponds to a simple backward/forward
substitution.

2.2.2. Updating A

To update A, we first reconstruct patch matrix P such that
pi = Rix, where x is the updated HR image. The task of
updating A can then be expressed as follows:

argmin
A

µ1

2
‖ΦA− (P + U)‖2F +

µ2

2
‖A− (Y − V )‖2F

+
µ3

2
‖ΦA− (Z −W )‖2F . (13)

The closed form solution to this problem is given by

A =
(

(µ1 + µ3)Φ>Φ + µ2I
)−1(

µ1Φ>(P + U)

+ µ2(Y − V ) + µ3Φ>(Z −W )
)
. (14)

Image 1 Image 2 Image 3 Image 4 Image 5

Fig. 2. The five test images: 1) abdomen CT, 2) thorax CT, 3)
chest CT, 4) ankle MRI, 5) knee MRI.

Since the linear system to solve has only K ≤ 100 equations,
updating A is fast.

2.2.3. Updating Y

Updating Y corresponds to solving an l1-norm proximal
problem

argmin
Y

λ‖Y ‖1 +
µ2

2
‖Y − (A+ V )‖2F , (15)

the solution of which is obtained via the soft-thresholding op-
erator Sη(X) = sign(X) ·max(|X| − η, 0):

Y = Sλ/µ2
(A+ V ). (16)

2.2.4. Updating Z

To update Z, we consider the following problem:

argmin
Z

γ

2
‖Z − ZΩ>‖2F +

µ3

2
‖Z − (ΦA+W )‖2F , (17)

Let Q = I − Ω>, the closed form solution this problem is

Z = µ3

(
ΦA+W

)(
γQQ> + µ3I

)−1
. (18)

Once again, Cholesky decomposition can be used to acceler-
ate the update of Z (see Section 2.2.1).

2.2.5. Updating U , V and W

Lastly, the Lagrangian multiplier are updated following the
usual ADMM method:

U ′ = U + (P − ΦA)

V ′ = V + (A− Y )

W ′ = W + (ΦA− Z) (19)

2.3. Post-processing artifact removal

In a low noise setting, the generative model of Eq. (1) imposes
that y ≈ DHx. Due to the sparsity and non-local embedding
constraints, the reconstructed HR image xmay not satisfy this
model exactly. This may lead to residual noise or artifacts
like ringing patterns in the image. Following [18], this can be
addressed with a post-processing step based on iterative back
projection (IBP). Let x0 be the image reconstructed from the
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Image 5 Zoomed region

Bicubic IBP

NARM NCSR

SRSW Ours

Fig. 3. Examples of reconstructions obtained for a zoomed
region of Image 5 (knee MRI).

Table 1. PSNR (dB) and SSIM obtained by the SR methods
on the test images of Figure 2 (scale = 2).

Bicubic IBP NARM NCSR SRSW Ours

Image 1 36.45 31.62 38.96 32.80 35.19 39.84
0.989 0.967 0.987 0.855 0.972 0.991

Image 2 33.69 27.74 36.09 31.85 30.07 37.17
0.965 0.929 0.965 0.830 0.908 0.980

Image 3 35.15 29.53 39.46 32.97 32.99 39.71
0.981 0.953 0.977 0.869 0.953 0.987

Image 4 31.76 28.91 31.88 30.48 30.86 33.57
0.926 0.894 0.917 0.835 0.909 0.951

Image 5 31.76 28.91 34.64 31.26 27.21 36.15
0.926 0.894 0.915 0.806 0.828 0.951

Average 33.76 29.34 36.21 31.87 31.26 37.29
0.957 0.927 0.952 0.839 0.914 0.972

SR method, the post-processing step consists in finding a new
image xnew such that

xnew = argmin
x

1

2
‖x− x0‖, s.t. y = DHx. (20)

The solution to this problem can be obtained efficiently us-
ing IBP. Starting with x0, the HR image is updated iteratively
using the following scheme:

xt+1 = xt + B(y − DHxt), (21)

whereB is a linear operator corresponding to upsampling and
back-projection.

Standard IBP methods can produce reconstruction arti-
facts by amplifying noise from one iteration to another. To
overcome this limitation, we use the improved IBP method
proposed in [16]. The general principle of this method is that
reconstruction artifacts are often characterized by high vari-
ance regions in the residual et = y − DHxt. To avoid such
artifacts, high variance terms of et are attenuated before ap-
plying the back-projection operator B.

3. EXPERIMENTAL RESULTS

We evaluated our proposed method on the five benchmark
medical images of Figure 2, previously used in [14]. We com-
pared our method to five well-known SR approaches: simple
bicubic interpolation, IBP [19], NARM [4], NCSR [13], and
SRSW [14]. For all experiments, we have used patches of
25 × 25 pixels (i.e., M = 625), and S = 17 for the number
of non-local similar patches. Following [4], dictionary Φ was
generated by clustering patches with the k-means algorithm,
using K = 60 as the number of clusters. Finally, regular-
ization parameters λ and γ were selected using a validation
set.

Table 1 gives the performance obtained by the methods
on the benchmark images, in terms of peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [20]. Based a
one-sided paired t-test, our method outperforms all other ap-
proaches, both in terms of PSNR (max. p-value of 0.0065)
and SSIM (max. p-value of 0.0185). Figure 3 shows ex-
amples of reconstructions obtained by the tested SR methods
on Image 5 of Figure 2. We can see that our method leads
to fewer ringing artifacts than other approaches, in particu-
lar bicubic interpolation, IBP and NCSR. In comparison to
NARM and SRSW, our method is better at recovering fine
details in the image, which could be useful for assessing the
microstructure of tissues.

4. CONCLUSION

We presented a novel method1 for the image super-resolution
problem. Our method combines sparse representation and
non-local patch embedding in a single model, and uses an
efficient optimization algorithm based on ADMM to recover
the high-resolution image. A post-processing step, using a
robust iterative back-projection technique, is proposed to re-
move residual artifacts in the reconstructed image. Experi-
ments on benchmark medical images show the advantage of
our method compared to several state of the art approaches.

1This work is partly supported by the National Nature Science Foundation
of China (61373078,61472220).
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