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ABSTRACT

Examining the dynamic aspects of functional networks in the brain
is imperative in order to obtain a thorough description and to gain a
better insight into its several features. Present methods of analysing
brain data in task-conditions mainly include concatenation followed
by temporal correlation. We employ Markov Chain Monte Carlo
methods, namely Metropolis within Gibbs sampling, on a stochas-
tic model to infer dynamic functional connectivity in such condi-
tions. By using a Bayesian probabilistic framework, distributional
estimates of the linkage strengths are obtained as opposed to point
estimates, and the uncertainty of the existence of such links is ac-
counted for. The methodology is applied to fMRI data from a finger
opposition paradigm with task and fixation conditions, investigating
the dynamics of the well characterised somato-motor network while
using the visual network as a control case.

Index Terms— functional connectivity, fMRI, Gibbs sampling,
Metropolis-Hastings, ROI

1. INTRODUCTION

Neuroimaging research has highlighted the significance of quantify-
ing and tracking brain dynamics in order to obtain a description of
the mechanisms behind its diverse set of operations. In this regard,
the brain has been functionally categorised into distinct large-scale
networks, typically through the application of functional connectiv-
ity to BOLD data collected during fMRI scanning, by identifying
the statistical interdependences of signals from remote brain regions
[1][2][3].

In task-conditions, it is believed that the functional networks in
the brain corresponding to the nature of the task will behave dif-
ferently when the task is being executed in comparison to when it
is not. To calculate functional connectivity, BOLD time-series data
in such conditions is usually concatenated followed by the applica-
tion of Independent Component Analysis (ICA) [4][5][6] or pairwise
correlation [7][8][9]. Though simple to use and easily scalable to
large sized networks, these methods are highly sensitive to noise and
outliers, and do not incorporate uncertainty into their computations.
Their results are simple point estimates which are very subjective
to the experimental characteristics of the data used. We introduce a
more sophisticated approach of inferring functional connectivity by
employing Markov Chain Monte Carlo (MCMC) methods, namely
Metropolis within Gibbs sampling, on a probabilistic model which
is currently used to describe causal relations among neuronal states.
This scheme sets the problem in distributional terms and accounts for
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experimental error as well as the uncertainty on prior assumptions.
We apply our methodology to fMRI data from a finger opposition
paradigm with task and fixation conditions investigating dynamics
of the somato-motor network, while using the visual network as a
control case. Our results are able to capture the dynamic differences
in the interactions of the motor network regions in comparison with
the fixation condition, which are not present to the same extent in the
visual network, hence verifying the efficacy of our method.

2. METHODS

2.1. Model

The BOLD signal xi,t from a brain location i is modelled such that
the change in the signal value at a given time t is the result of a sum-
mation of forces, which are dependent on BOLD signals from other
nodes, linked through interaction parameters φi,j . This is described
as:

∆xi,t = [ΣNj=1,i 6=jSi,jφi,jxj,t − γixi,t]∆t+ σ2
iWi,t, (1)

where xi,t is magnitude of the BOLD signal at node i at time t, φi,j
is the interaction parameter between nodes i and j, Si,j ∈ {0, 1} is
an indicator variable to specify the existence of a link between nodes
i and j, Wi,t represents Brownian motion with unit variance, σ2

i is
the variance of this noise for node i, γi is an optional mean-reverting
or self-inhibition term to prevent the signal from taking very large
values, and N is the total number of nodes in the network.

This model is akin that used widely in neuroscience for dynamic
causal modelling DCM in which the underlying neuronal states and
physiological parameters are inferred via the observed haemody-
namic response [10][11][12][13]; however, here it is used to model
interaction among BOLD signals directly. Inclusion of sparsity
through the indicator variables in our analysis is useful as we ex-
pect our particular application to brain networks to naturally have a
sparse representation, because not every pair of nodes is connected
through a significant link. In addition to providing a more represen-
tative description through a lesser number of important parameters,
it yields more efficient results and requires lesser storage. The con-
cept of sparsity has been previously employed in neuroimaging to
analyse fMRI and EEG data using mainly regularisation schemes
[14][15][16][17][18][19]; however, it has not been used in a full
Bayesian network setting to infer functional connectivity.

The system over all nodes in Equation 1 can be described as a
linear stochastic differential equation of the form:

∆Xt = AXt +BWt, (2)

where Xt ∈ RN×1is[xt,1, xt,2, · · · , xt,N ]T and is the state of all
nodes at time t, and Wt represents noise which could be due to car-
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diac motion, respiratory volume, blood flow etc.
The matrix A ∈ RN×N is defined as:

A = ∆t



−γ1 S1,2φ1,2 S1,3φ1,3 · · · · · ·
S1,2φ1,2 −γ2 S2,3φ2,3 · · · · · ·
S1,3φ1,3 S2,3φ2,3 −γ3 · · · · · ·

...
...

...
. . .

...
...

...

 (3)

and B ∈ RN×N is an identity matrix.
If Φ ∈ RM×1 is defined as [φ1,2, φ1,3, · · · , φN−1,N ]T where

φi,j = φj,i and M = N × (N − 1)/2, and S ∈ RM×1 is de-
fined as [S1,2, S1,3, · · · , SN−1,N ]T , then for a given set of linkage
parameters values and sparsity variables, the transition density ofXt
is given by the following Normal distribution:

p(Xt|Xt−1, S,Φ) = N (Xt|F (S,Φ)Xt−1, Q), (4)

where F and Q are transition and covariance matrices respectively,
and are given as follows:

F (S,Φ) = A(S,Φ) + I, (5)

Q = BPBT , (6)

where I is an identity matrix and P ∈ RN×N is σ2I .
The observation model is specified as:

zi,t = xi,t + vi,t, (7)

where vi,t is random additive noise having a Gaussian distribution
with a mean of zero and variance σ2

Z and represents measurement
noise. Then the observation probability density for the joint state is
given by:

p(Zt|Xt) = N (Zt|Xt, σ2
ZI), (8)

where Zt ∈ RN×1 is [z1,t, z2,t, · · · , zN,t]T and describes the ob-
servations at time t.

By specifying the model in terms of state and observation equa-
tions, the problem can be cast in probabilistic terms. In order to es-
timate the values of the underlying linkages φi,j from observations
and thereby infer the networks, the aim is to calculate the posterior
probability distribution p(S,Φ|Z1:t) where Z1:t is the observation
set up to time t. Altered conditions will render different networks
and hence different values for the parameters. As explained in the
next section, this inference is carried out for two different states,
namely activation and fixation.

2.2. Algorithm

When studies are conducted in the field of Neuroscience to investi-
gate neurological responses to various kinds of stimuli, the subjects
are typically instructed to engage in a task intermittently with pe-
riods of rest in between. For the case where networks are deemed
to change abruptly, such as in the case of motor task based experi-
mental data examined later, the most suitable approach is to divide
the data set according to the associated experimental conditions and
to treat each concatenated subset as a static network. For instance,
the model switches between two modes G and H depending on the
external conditions. This reduces the problem to inferring constant
parameters in each of these subsets with known change-points using

offline methods.

Model⇒

{
G ← conditions g
H ← conditions h

A Markov Chain Monte Carlo (MCMC) algorithm [20][21] is
used to infer the different networks via sampling from the joint dis-
tribution p(S,Φ|Z1:t) without the need to sample the BOLD sig-
nals X1:t as these are marginalised out. As direct sampling from
the joint distribution is difficult, Gibbs sampling is used to obtain
samples approximating the posterior distribution of these linkage
parameters. This samples from the full conditional distribution of
each variable in turn, conditional on the current values of the other
variables. For variables for which this full conditional distribution is
difficult to sample, Metropolis-within-Gibbs sampling can be used in
which a new sample is proposed from an easy to sample distribution
and accepted with a probability given by the Metropolis-Hastings
algorithm.

In our case, we would like to sample each φi,j from its full con-
ditional distribution p(φi,j |S, φall/i,j , Z1:t).

p(φi,j |S, φall/i,j , Z1:t) =

p(Z1:t|φi,j , φall/i,j , S)p(φi,j |φall/i,j , S)
(9)

As it is difficult to sample directly from this distribution,
Metropolis within Gibbs sampling is employed in order to make
inference.

If the corresponding indicator variable Si,j is currently active,
i.e. has a value of 1, then φi,j is given from a random walk proposal.

q(φ∗i,j |φn−1
i,j , φall/i,j) = N (φ∗i,j |φn−1

i,j , σ2
φ) (10)

where φ∗i,j is the proposed value, φn−1
i,j is the previous sample, and

σ2
φ is the sampling variance.

The next step is to compute the likelihood of data given the new
sample and compare it with the current value, in order to calculate
the Metropolis-Hastings ratio:

K =
p(Z1:t|S, φall/i,j , φ∗i,j)q(φ∗i,j |φn−1

i,j , φall/i,j)

p(Z1:t|S, φall/i,j , φn−1
i,j )q(φn−1

i,j |φ∗i,j , φall/i,j)
(11)

As the proposal density is Normal and thus symmetric, this re-
duces to:

K =
p(Z1:t|S, φall/i,j , φ∗i,j)
p(Z1:t|S, φall/i,j , φn−1

i,j )
(12)

The observation likelihood p(Z1:t|S,Φ) can be found using
quantities calculated from the Kalman filter such that:

p(Z1:t|S,Φ) = p(Z1)Πh=t
h=2N (Zh|µh|1:h−1, Ch|1:h−1), (13)

where µh|1:h−1 and Ch|1:h−1 is the predictive mean and covariance
of the observation respectively, found through Kalman filtering re-
cursive equations. This distribution is an integration over the hidden
state Xt since:

p(Z1:t|S,Φ) = p(Z1|S,Φ)Πh=t
h=2p(Zh|Zh|1:h−1, S,Φ), (14)

and

p(Zt|Zt−1, S,Φ) =

∫
p(Zt|Xt)p(Xt|Z1:t−1, S,Φ)dXt, (15)

where p(Xt|Z1:t−1, S,Φ) is the predictive distribution of the next
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ROI Name Abbreviation Co-ordinates

Motor

Supplementary
Motor Area

SMA [-4 -2 54]

Left Precentral
Gyrus

PRECGL [-36 -22 64]

Right Precen-
tral Gyrus

PRECGR [60 8 28]

Left Postcentral
Gyrus

POCGL [-40 -26 52]

Right Postcen-
tral Gyrus

POCGR [56 -16 38]

Visual

Left Lingual
Gyrus

LINGL [-15 -72 -8]

Right Lingual
Gyrus

LINGR [18 -47 -10]

Left Calcarine LCALL [-18 -68 5]
Right Calcarine LCALR [8 -72 -8]
Right Fusiform
Gyrus

FFGR [27 -59 -9]

Table 1: Details of Regions of Interest

state. In the linear Gaussian case, this integral can be computed
in closed form to give the one-step observation likelihood, which
is Gaussian with mean and variance given by that in Equation 13.
The sample in Equation 10 is then accepted with a probability of
min(1,K).

If the corresponding indicator variable Si,j is zero, which means
that φi,j does not exist in the previous instance, then the sample is
simply taken from a prior distribution:

p(φni,j) ∼ N (µφ, σ
2
φ). (16)

A the indicator variables can only take one of two possible val-
ues, the probability of both possibilities can be calculated in a Gibbs
sampler, and the ratio can be used to accept one of them. The poste-
rior over Si,j ∈ {0, 1} is given by the product of data likelihood and
its prior.

p(Si,j |Z1:t, φall, Sall/i,j) =

p(Z1:t|Si,j , φall, Sall/i,j)p(Si,j |φall, Sall/i,j)
(17)

The prior p(Si,j |φall, Sall/i,j) can, in the simplest case, be
given by an independent Bernoulli distribution for each case of Si,j
where a small value of v favours sparse network structures while a
value of 0.5 represents the completely uninformed case.

p(Si,j = s|φall, Sall/i,j) =

{
v s = 1

1− v s = 0
(18)

3. EXPERIMENTAL DATA

The algorithm was first tested on synthetic samples in order to ver-
ify its robustness and efficiency, and confirm its ability to estimate
meaningful results when applied to experimental fMRI data. It is
complex to benchmark the performance of simulated data results
with those obtained from current methods employing subtractive
analysis, as the realms of models and underlying assumptions are
different and any direct comparison of numerical errors obtained
would not be a fair and accurate approach. However, the similar-

Mean absolute
change

Correlation
analysis

Metropolis with Gibbs
sampler

Motor network 0.0376 0.0707
Visual network 0.0245 0.0497
Visual/Motor 0.70 0.65

Table 2: Average change in links obtained from Metropolis within
Gibbs and correlation analysis

ity of results acquired when applied to real data in this section yield
an insight into the employability of our proposed methodology.

Twenty-two healthy subjects with an age range of 19 to 57 and
a mean of 35.0 participated in a self-paced, right-handed finger op-
position task-based, boxcar design experiment with five alternating
cycles of task and fixation blocks. The task comprised of touching
one’s fingers sequentially from index to little finger with the right
thumb, and continuing to do so till the end of the task period. A
visual move command was an indication to carry out the task while
rest was to stop it in order to enter the fixation state. Each cycle
lasted for 30 seconds making the entire period of data acquisition
for one participant to be five minutes.

fMRI data was obtained using a Siemens Trio 3T scanner with
whole-brain echo planar imaging (TR = 2000 ms; TE = 30 ms; flip
angle = 78◦; FOV read = 192 mm; voxel size = 3.0 x 3.0 x 3.0 mm;
volumes = 160; slices per volume= 32). Preprocessing of imaging
data involved standard slice-time and motion corrections, normaliza-
tion to the Montreal Neurological Institute (MNI) space and an apri-
ori grey matter template, smoothing with an 8 mm FWHM Gaussian
kernel, and low-pass filtering (0.009 - 0.08 Hz).

The experiment was conducted at the Wolfson Brain Imaging
Centre, Cambridge, UK and was approved by the local ethics com-
mittee with all participants having given informed consent in writing.

BOLD time-series data acquired for five regions of interest
(ROIs) corresponding to motor function and five regions that relate
to visual activity is analysed. The names and MNI co-ordinates
of these ROIs are listed in Table 1. Given the nature of the task
involving motor skills and dexterity, it is believed that the network
formed by the motor ROIs would undergo a more significant change
in the two modes of activation and fixation, than that formed by the
visual nodes.

Figure 1 shows the results of applying our algorithm to fMRI
measurements taken from one subject undergoing this experiment.
For the entire cohort, the average change in all links found over the
entire sample for the two kind of networks is displayed in Table 2.
To validate this computation, a similar analysis is conducted on the
same data using temporal correlation, and the results are included.
As expected, the absolute change in the motor network is greater on
average than that in the visual network. It can be noted that the mean
proportional change in the interaction strengths matches very well to
the one found by correlation analysis. This offers as a confirmation
that our novel approach of finding functional connectivity provides
sensible results and could thus be used for further analysis.

In order to complete this study, a paired t-test is applied to our
results. This test is used to determine whether the two sets are sig-
nificantly different from each other, the null hypothesis being that
the difference has a distribution with zero mean and unknown vari-
ance. Paired t-test is applied to the motor and visual networks at a
5% significance level as shown in Table 3. Unlike for the visual case,
the p-value, which is the probability of observing the given result if
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(a) Activation motor network (b) Fixation motor network

(c) Activation visual network (d) Fixation visual network

Fig. 1: Sample results obtained from experimental data of one subject.

p-value Lower bound Upper bound Std
Motor 0.0033 -0.0345 0.0099 0.0500
Visual 0.2613 -0.0530 -0.0121 0.0461

Table 3: Results from paired t-tests

the null hypothesis is true, calculated for the motor network is much
lower than 0.05 indicating that it undergoes a statistically significant
change between the activated and fixated periods. These findings
further substantiate the validity of our work.

4. CONCLUSION

We have presented a method of inferring functional connectivity
using a Bayesian framework in a full network form. A case with
a clear hypothesis has been examined, in which the motor network
was believed to change more significantly than the visual network.
In order to investigate the implications of our work in the context
of providing network-level diagnostic tools, data from patients with
traumatic brain injury (TBI) is being analysed for disruptive effects,
which could serve as a guide for more comprehensive therapeu-
tic treatments. Having validated the proposed methodology and
demonstrated its potential use, we can then delve into the unknown
realms of resting-state data and attempt to infer parameters that are
smoothly varying with time. This more complicated case would
require the use of Sequential Monte Carlo methods [22] and could

yield an even more comprehensive understanding of brain functions.
We aim to further improve our algorithms for obtaining more

accurate inference as well as extending to networks of larger sizes.
By providing network level descriptors of brain functions, our work
has the potential of offering novel disease markers for diagnostic
as well as therapeutic purposes which are not only limited to TBI
[23][24][25], but also include neurological disorders such as ma-
jor depression [26][27], schizophrenia [28][29][30] and Alzheimer′s
disease [31][32][33].
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