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ABSTRACT

Next-generation sequencing (NGS) has revolutionized the detection

of structural variation in genome. Among NGS strategies, read depth

is widely used and paramorphism information contained inside is

generally ignored. We develop an algorithm that can fully exploit

both read depth and paramorphism information. We embed muta-

tion procedure in our system model for estimating prior likelihood

of single nucleotide base. Hidden Markov model (HMM) is used to

connect single base into segments and belief propagation algorithm

is performed for the optimal solution of the HMM model. Simula-

tions show promising results in detecting important types of struc-

tural variation. We have applied the algorithm on the maize B73 and

MO17 genome data and compared the results with those obtained

from arrayCGH method based micro-array data. Inconsistency be-

tween the two sets of data is discussed.

Index Terms— Copy number variation, graphical model, belief

propagation, read depth, paramorphism

1. INTRODUCTION

Structural variation is defined as insertions, deletions and inversions

in the sequence level or copy number variation (CNV) and pres-

ence/absence variation (PAV) in genomic level. Structural Variations

(SV) are associated with the cause of disease as well as different

traits between individuals [3, 4, 12]. Detecting structure variation in

genomes has been under research quite long and great development

has been achieved [1]. Among the SVs, CNV corresponds to rel-

atively large regions of deletion or duplication more than the usual

number of copies [5, 9]. Some CNVs are known to be associated

with diseases [2, 11].

Compared to array-based methods, methods based on next-

generation sequencing (NGS) require less labor and have less lim-

itations in accuracy. Through de novo assembly, given long and

accurate enough read sequence, all kinds of SV could be recon-

structed [1]. However, de novo assembly is still under development

to reduce its complexity and improve algorithm speed as well as

reduce cost for large genome datasets.

Tuzun et al. [8] proposed a way of detecting accurate small

SV segments less than 1 kbp using paired-end reading (PEM)

strategy. Small length SVs as well as their boundaries could

be estimated precisely through exploiting paramorphism infor-

mation. Zollner et al. [12] applied Bayesian computations and

expectation-maximization (EM) algorithm to a known CNV loca-

tion and achieved accurate estimation of CNV carrier status and

its boundaries. However, known location is necessary in this al-

gorithm. Compared to them, read depth provides a wide detection

range and statistical accuracy. Event-Wise Testing achieved fast

algorithm speed via processing intervals of read depth and applied

statistical significance test to the intervals with controlled signifi-

cance level [10]. It achieved satisfactory results for CNV segments

around 1000bp. A method called CNAseg applied Skellam distribu-

tion to read depth and employed Hidden Markov Model (HMM) on

combining segments of read counts and found better estimation and

precision besides lower significance level [4].

We are interested in detecting CNV based on NGS data in this

paper. We will combine both read depth and paramorphism to

achieve better CNV detection range and accuracy. Ideally, segments

less or larger than 1 kbp can both be detected accurately. The main

contributions are as follows:

1) We propose a novel model for the process of nucleotide copies,

paramorphism, and the randomness in the sequencing process.

2) We evaluate likelihood of CNV considering mutation probability

at each base pair location, taking into account both read depth and

paramorphism information.

3) We proposes a simple HMM relating the copy number variation

and presence/absence variation of neighboring base pairs. We also

derive a belief propagation algorithm to estimate the copy numbers

and possible presence/absence variation.

The algorithm has been applied to lab measured data comprising

a reference genome and a sample genome. The results are compared

with those obtained with arrayCGH.

2. SYSTEM MODEL

Our system model consists of two parts: 1) a single symbol model

for a base pair that considers copy number variation, mutation, and

the randomness in the sampling process; and 2) an HMM that incor-

porates the dependence among neighboring base pairs.

2.1. Single Base Pair Model
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Fig. 1. Single Base Pair Model

869978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



Our proposed model is depicted in Figure 1. The model de-

scribes what happens to a single base pair in the sample species. A

symbol S goes through three steps to produce the observed data:

copying, mutation, and sampling (or reading). We are interested in

using the model to estimate the likelihood of copy numbers from the

known read depth and the read distribution, available in the PILEUP

format data. There are 4 possibilities for S, namely {A,C,G, T} :=
B.

Copy. For each symbol, assume its true copy number is n. The DUP

block in the figure replicates the symbol S and produces n copies of

S at its output.

Mutation. Each of the n copies can mutate to a different symbol with

certain probability. This is represented as a MUT block in the fig-

ure. For simplicity, we assume the non-mutation probability for each

copy of each symbol is the same as (1 − p). Let M1,M2, . . . ,Mn

be the n symbols after mutation. We denote the type of the mutated

symbols as n = (nA, nC , nG, nT ), where ni is the number of sym-

bols i in the sequence (M1,M2, . . . ,Mn), for i ∈ {A,C,G, T}.

The mutation distribution n is a vector describing mutation dis-

tribution in the order of ATGC. For example, if S = A, and there

is no mutation, then n = [n, 0, 0, 0]. If A has one copy symbol

mutated to G, then n = [(n− 1), 0, 1, 0].
Given the known symbol S, and the copy number n, the muta-

tion distribution is multinomial:

Pr(n|n, S) =
n!

∏

i∈B ni!

∏

i∈B

Pi
ni , (1)

where

Pi =

{

1− p, i = S,

p/3, i 6= S.
(2)

Reading. Each mutated copy has a certain probability of being sam-

pled by the sequencing procedure. The reading result has two parts

of information: the read depth, and the read distribution.

We use Poisson distribution to model the read depth. Assuming

the read depth number is k, the probability of getting a known k read

depth given copy number n should be like this:

Pr(k|n) =
(nλ)ke−nλ

k!
(3)

where λ is the parameter of the Poisson distribution. Symbols in

reference genome are assumed to have only one copy. If there is no

copy procedure, sample symbol read depths are expected to have the

same mean as the reference symbols. So we will choose the read

depth in the reference genome times possible copy numbers as the

parameter λ, the expected rate of increasing number for that symbol.

Reading Error. In the process of mapping symbols, there is a prob-

ability of error for each read symbol. However, in this work, for

simplicity, we consider the probability of error to be the same for

all, represented by ǫ. Suppose there are na counts of symbol A, nG

counts of G, nC counts of C and nT counts of T. For each symbol,

the probability of detecting one A in the observed data is:

qA = (1− ǫ)na/n+ (ǫ/3)(ng + nc + nt)/n,

where n = nA + nC + nG + nT . In general, for any symbol i,
the probability of reading an i would be qi = (1 − ǫ)ni/n + (ǫ/
3)

∑

j 6=i
nj/n.

That is, given the mutation distribution n, the distribution of the

read results k := (kA, kC , kG, kT ) should be as follows:

Pr(k|k,n) =
k!

∏

i∈B ki!

∏

i∈B

qi
ki (4)

where B = {A, T,G,C}, and k =
∑

i∈B ki is the read depth.

2.2. Likelihood Copy number

Using the chain rule of probability, we can write Pr(k, k,n|n, S) as

Pr(n|n, S) · Pr(k|n, S,n) · Pr(k|n, S,n, k)

= Pr(n|n, S) · Pr(k|n) · Pr(k|n, k) (5)

where in (5), we have used

Pr(k|n, S,n) = Pr(k|n) (6)

which means that the read depth does not depend on what symbols

are being read, and

Pr(k|n, S,n, k) = Pr(k|n, k) (7)

which means that once the mutation distribution n is known, and for

a given read depth k, k does not depend on the copy number n and

the source symbol S.

We can then marginalize (average out) the mutation n to obtain

Pr(k, k|n, S) =
∑

n

Pr(k, k,n|n, S), (8)

where the summation is over n such that
∑

i∈B ni = n. Further

marginalizing the total read depth k, which is trivial as k =
∑

i∈B ki
deterministically, we have

Pr(k|n, S) =
∑

n

Pr(k, k,n|n, S) (9)

2.3. Hidden Markov model

To model the dependency of the neighboring symbols’ copy num-

bers, we assume a HMM and use it for combining long sequence of

copy number estimates. HMM has been previously used to model

single nucleotide polymorphisms (SNP) detection [4, 7].

Let ni−1 and ni represent the copy number at two adjacent lo-

cation i − 1 and i. The variable δi could be viewed as the hidden

state at location i. The mapping relationship between copy number

and hidden variable is:

ni+1 = 1 + (ni + δi − 1) mod m. (10)

The m above stands for the number of states in the model.

The change δi has a probability distribution like follows:

Pr(δ = 0) = p, and Pr(δ 6= 0) = 1− p,

where δ = 0 represents no change in copy number, and δ 6= 0
indicates a change. In the case where there is a change, we will

assume that the probability (1 − p) is equally split among the cases

where ni+1 6= ni. The probability p will be chosen according to

desired gene CNV segment length. The Markov model corresponds

to setting

Pr(ni+1|ni, ni−1, ni−2, . . .) = Pr(ni+1|ni)

and

Pr(ni+1 = ni|ni) = p, Pr(ni+1 6= ni|ni) = 1− p.

3. ALGORITHM

The algorithm consists two steps. In the first step, each symbol is

processed independently to obtain the likelihood for different copy

numbers and presence/absence variations. In the second step, the
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Fig. 2. Sum-Product Algorithm for the CNV problem

single-symbol information is jointly processed using the hidden

Markov model through a belief propagation algorithm.

3.1. Single-Symbol Processing

The input is one input line in the PILEUP file data (the read results

of the sequencing output for one base pair). And the output is the

likelihood of various copy number possibilities (states).

In many genomes such as the maize genome, large copy number

is common. However, the CNV that we do have interest is relative

small numbers, usually less than 3. For this reason, and to reduce

the computation complexity, we consider the cases where the copy

number n is larger than 3 jointly.

For each symbol of the sample, we compute the likelihood of the

copy number n being in state i ∈ A := {0, 1−, 1, 2, 3, 3+}, where

• n = 0 means deletion: the segment was present in the refer-

ence but not present in the sample.

• n = 1− means copy number reduction: the copy number

in the reference is larger than 1, and the copy number in the

sample is smaller than that in the reference.

• n = 1, 2, 3 means respectively that the copy number is 1, 2,

and 3.

• n = 3+ means that the copy number is larger than 3.

Given the observation data, which is in the form of the read

depth and read distribution, we can then compute the likelihood

for each base pair. For simplicity and faster processing speed, we

choose to ignore the mutation information when the read depth is

large enough.

3.2. Belief propagation algorithm

Let N denotes the total length of a chromosome of interest, our ob-

served data are ∆ = (S1, . . . , SN ;k1 . . .kN ). Our goal is to esti-

mate the copy numbers nj for j = 1, . . . , N . Specifically, we would

like to compute the following distributions:

P (nj |S1, . . . , SN ;k1 . . .kN ). (11)

This problem in general has high complexity due to the need to

marginalize all symbols but nj in the joint posterior distribution of

(n1, . . . , nN ). For our problem, we have

P (n1, . . . , nN |S1, . . . , SN ;k1, . . . ,kN ) (12)

∝ P (n1, . . . , nN ;k1, . . . ,kN |S1, . . . , SN )

=
N
∏

i=1

P (ni|ni−1)
N
∏

i=1

P (ki|Si, ni) (13)

=

N
∏

i=1

P (ni|ni−1)P (ki|Si, ni) (14)

where in (13) we have used the assumption that the copy numbers

(n1, . . . , nN ) form a Markov chain, and the fact that given the copy

number ni and the symbol Si the read ki at location i is independent

of symbols, copy numbers, and read results at other locations.

Due to the Markov structure, a low complexity algorithm for

computing the posterior probabilities in (11) is possible through the

belief propagation algorithm. We use factor graph [6] to represent

the HMM constraints as a graphical model and use the sum-product

algorithm to obtain the posterior distribution of the copy numbers.

There are two types of nodes in Fig 2. One type that has the

“=” sign represents constraints of equal value passing through the

node. Another node has + sign inside which represents constraints

that one value equals to the summation of another two.

We computations to be performed in the message passing algo-

rithm are as follows:

1. At the “Plus” nodes:

(a) From left to right:

βR,i(n) =
∑

l

αR,i(l)ζi(n− l). (15)

(b) From right to left:

αL,i(n) =
∑

l

βR,i(l)ζi(l − n). (16)

2. At the “Equal” nodes:

(a) From left to right:

αR,i(n) = βR,i−1(n)γD,i(n) (17)

(b) From right to left:

βL,i−1(n) = αL,i(n)γD,i(n) (18)

(c) The message up:

γU,i−1(n) = αL,i(n)βR,i−1(n) (19)

The output of the algorithm is the posterior probabilities in (11).

Specifically, we have

P (nj |S1, . . . , SN ;k1 . . .kN ) = γD,i(n)γU,i(n).
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4. RESULTS

We used maize genome data for analysis. Two sets of data for two

species are available. The reference genome is named B73 and

the sample one named MO17. We process the genome from chro-

mosome to chromosome. For each chromosome, we read the in-

dex, symbol, read depth and read depth distribution from the sample

genome and the index, and retrieve the read depth from reference

genome. We then transform the data from symbols to numbers. We

use 1, 2, 3, and 4 in our algorithm to represent A T G C, respectively.
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Fig. 4. read depth distribution in both the reference and the sample

We find the nucleotide indices that exist in both sample and ref-

erence genome and assign the reference read depth as the λ param-

eter for the corresponding symbol on the sample. The we take the

union of the reference index and sample index. Thus if there is a

total deletion, the corresponding value for λ is zero, which would be

easy for the algorithm detection.

4.1. Distribution of the read depth

We obtained the distribution of the read depth in the two genomes.

In Figure 4, the read depth distribution in both the reference and the

sample is depicted. For the sample (MO17) and for n = 1, 2, 3,

the distribution can be approximated as (0.41)n. For n ≥ 4, we

averaged the ratio between two adjacent numbers and found it can be

approximated as 0.0637 × (0.8544)(n−4). The likelihood function

finally turns out to be

L(n ≥ 4) = 0.2732×
λk(k + 1)

(λ− ln 0.8544)k
[1− γ(inc)(4λ, k)] (20)

The γ(inc)(·) denotes the incomplete gamma integral from 1 to 4λ:

γ(inc)(x, k) =

∫ x

0

tk−1e−tdt. (21)

Use integral to replace the summation may lead to biased results.

However, such bias would not affect the decision significantly.

4.2. Processing measured genomic data

For measured genomic data, we took chromosome number 6 in ref-

erence genome and its corresponding sample genome and ran our

algorithm. Since there are no ground truth data on the structure

variation in the chromosome, we compared our result with that of

micro-array-based method arrayCGH.

We set the reading error probability to 10−3. We only keep seg-

ments longer than 1kb in the output, by performing filtering on the

message passing algorithm output. In Figure 3 we plotted the de-

tected PAV result, as compared with that from the arrayCGH method.

The x axis denotes the starting point of a structure variation segment,

and the length in the y direction describes the length of the segment.

For the arrayCGH result, we plot them upward, and for our result,

we plot them downward. It can be seen that most of the locations are

overlapped in the figure. However, the lengths of the segments tend

to be longer in the arrayCGH case.

Except for the small segments of deletion, outliers would result

in breakpoints. Fortunately, outliers usually affect a small area which

lasts about 20 symbols. If we fill those regions as the CNV we want,

it would be easy for the algorithm to detect CNV larger than 1kb.

Almost all the CNV indicated from arrayCGH are included in our

result. Besides, our result reports more possible regions of CNV.

5. CONCLUSIONS AND DISCUSSION

Using read depth and paramorphism information, we developed a

method for detecting copy number variation between two different

genomes. We exploited the paramorphism information to strengthen

read depth power in detection of structural variation in genome. Also

we applied belief propagation to solve the HMM and found the con-

ditional single base copy number probability based on the prior in-

formation of other base pairs. Our results offered similar regions and

reliable likelihood of the PAV and CNV region compared with those

detected from arrayCGH method. Besides, our method provides ac-

curate start and end locations for simulated region. Our future work

will focus on improving the segment detection accuracy and reduc-

ing the overall algorithm complexity. It would also be useful to be

able to treat diploid genomic data.
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