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ABSTRACT

Recent advances in high-throughput sequencing technologies
have led to the collection of vast quantities of genomic data.
Structural variants (SVs) – rearrangements of the genome
larger than one letter such as inversions, insertions, dele-
tions, and duplications – are an important source of genetic
variation and have been implicated in some genetic diseases.
However, inferring SVs from sequencing data has proven to
be challenging because true SVs are rare and are prone to
low-coverage noise. In this paper, we attempt to mitigate the
deleterious effects of low-coverage sequences by following a
maximum likelihood approach to SV prediction. Specifically,
we model the noise using Poisson statistics and constrain
the solution with a sparsity-promoting `1 penalty since SV
instances should be rare. In addition, because offspring SVs
inherit SVs from their parents, we incorporate familial rela-
tionships in the optimization problem formulation to increase
the likelihood of detecting true SV occurrences. Numerical
results are presented to validate our proposed approach.

Index Terms— Sparse signal recovery, convex optimiza-
tion, next-generation sequencing data, structural variants,
computational genomics

1. INTRODUCTION

Recent advances in high-throughput sequencing technologies
have led to the collection of vast quantities of genomic data.
The 1000 Genomes Project [1], which catalogues human ge-
nomic variation in comprehensive detail, and the 3000 Rice
Genomes Project [2, 3], which reports an international re-
sequencing effort of 3,000 rice genomes, are two success-
ful examples of such large-scale sequencing studies. These
massive repositories of data offer the potential to increase our
understanding of the complex evolutionary history of differ-
ent species, identify genetic basis of important phenotypes
including disease and – for humans – usher in the era of per-
sonalized medicine [4, 5]. A promising class of genetic vari-
ant emerging from such studies are structural variants (SVs)
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Fig. 1. Example of different structural variations in a sample
genome in comparison to the reference genome.

– rearrangements of the genome larger than one letter such as
inversions, insertions, deletions, and duplications (see Fig. 1).

SVs are typically predicted by sequencing fragments from
an unknown individual genome and mapping those fragments
to a previously identified reference genome [6, 7]. If the start-
ing points of the genomic fragments are chosen uniformly and
randomly from the genome, then the expected number of frag-
ments covering any position in the genome is given by a Pois-
son distribution [8]. The mean of this Poisson distribution
is referred to as the coverage of the genome. Since, in most
large sequencing studies, many individuals will be sequenced
at low coverage, even if an individual carries a genetic vari-
ant, we may not sample a fragment from that particular region
of the genome. Similarly, if we observe a single fragment
supporting a variant, it may represent an erroneous mapping
rather than a true observation.

There have been many published methods to identify SVs
from sequencing data (see, e.g., [9, 10, 11, 12, 13]). However,
these approaches almost universally rely on high-coverage of
a single individual genome and not on the scenario emerging
from many large-scale sequencing efforts where there is low-
coverage of many individuals. In addition, prior approaches
when applied to populations typically consider each individ-
ual in isolation when – in fact – common variants would be
shared by many individuals. Finally, most methods utilize
a threshold – minimum number of supporting fragments –
to prioritize predicted variants rather than a likelihood based
statistic. Indeed, inferring SV information from sequencing
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data has proven to be challenging because true SVs are rare
and are prone to low-coverage noise. In this paper, we attempt
to mitigate the deleterious effects of low-coverage sequences
by following a maximum likelihood approach to SV predic-
tion. Specifically, we model the noise using Poisson statis-
tics and constrain the solution to promote sparsity, i.e., SV
instances should be rare. Further, we consider multiple indi-
viduals and use relatedness among individuals as a constraint
on the solution space – to our knowledge, this is the first SV
detection algorithm to do so. Specifically, in our work below
we use the assumption that a parent and child are sequenced
and require that any SVs predicted in the child be present in
the parent. Numerical analysis of both simulated and real se-
quencing data suggest that our approach has the promise to
improve SV detection in studies of many low-coverage indi-
viduals.

2. SPARSE POISSON LOG-LIKELIHOOD
OPTIMIZATION

Let ~f∗i ∈ {0, 1}n be the vector of genetic variants for an in-
dividual i, i.e., ~f∗i,j = 1 if individual i has genetic variant j
and is 0 otherwise. Let ~yi ∈ Zn

+ be the vector of observations
for individual i. The variables ~yi,j obey a Poisson distribution
[14] whose mean, ci, is equal to the sequencing coverage of
individual i. In this paper, we specifically consider the struc-
tural variants for two individuals who are related, namely a
parent and child. Let ~f∗p and ~f∗c be the true genomic variants
for a parent and child, respectively. Then the corresponding
observations, denoted by ~yp and ~yc, are given by

~yp ∼ Poisson(Ap
~f∗p )

~yc ∼ Poisson(Ac
~f∗c ),

(1)

where Ap = (cp − ε) I, Ac = (cc − ε) I ∈ Rn×n linearly
transforms ~f∗p , ~f

∗
c onto an n-dimensional set of observations

~yp, ~yc ∈ Zn
+. The constants cp and cc represent the sequenc-

ing coverage of the parent and child genome, respectively. It
is assumed that ε, the error term in the measurement of the
true signals, is the same for both observations.

We consider a general framework for the recovery of vari-
ant detection given sequencing data from one parent and one
child. Our observation ~y will be considered a stacked signal
in the form

[
~yTp ~yTc

]T
, where ~yp and ~yc represent observa-

tions of parent and child, respectively. Since the true signal
~f∗ is also stacked, our observation model is given by

~y ∼ Poisson(Â ~f∗), (2)

where Â ∈ R2n×2n is a block-diagonal matrix with upper-left
block Ap and lower-left block Ac.

2.1. Problem formulation

Under this Poisson model (2), the probability of observing ~y
is given by

p(~y|Â ~f∗) =
2n∏
i=1

(~eTi Â
~f∗)~yi

~yi!
exp

(
−~eTi Â ~f∗

)
, (3)

where ~ei is the ith canonical basis vector. Under a similar
framework in [15] and ignoring constant terms log(~yi!), we
minimize the negative Poisson log-likelihood given by

F (~f) = 1T Â ~f −
2n∑
i=1

~yi log
(
~eTi Â

~f + ε
)
, (4)

with gradient

∇F (~f) = ÂT1−
2n∑
i=1

yi

~eTi Â
~f + ε

ÂT~ei, (5)

where 1 is a vector of ones. Hence, we focus on solving the
following constrained optimization problem:

minimize
~f∈R2n

φ(~f) ≡ F (~f) + τpen(~f)

subject to 0 ≤ ~fc ≤ ~fp ≤ 1,

(6)

where ~f =

[
~fp
~fc

]
, τ > 0 is a regularization parameter, and

pen is usually a non-differentiable penalty functional. Here,
we impose the constraint 0 ≤ ~fc ≤ ~fp ≤ 1 element-wise to
enforce the continuous variables ~fc and ~fp to lie between 0
and 1 (i.e., SVs are either present or not), but in addition, to
require that a variant in the child genome can be present only
when the parent genome also has that variant.

2.2. Sparsity penalty

Our approach to solving (6) is based on SPIRAL [15, 16, 17],
which is an iterative method whose iterates are defined from
minimizing a sequence of quadratic subproblems. This ap-
proach utilizes the second-order Taylor expansion of the Pois-
son log-likelihood, F (~f), around the current iterate ~fk and
approximates the second derivative matrix by a scalar multi-
ple of the identity matrix αkI , αk > 0 [15, 18, 19]. Thus, the
next iterate is given by

~fk+1 =

[
~fk+1
p
~fk+1
c

]
= arg min

~f∈R2n

F k(~f) + τpen(~f)

subject to 0 ≤ ~fc ≤ ~fp ≤ 1,

(7)

where

F k(~f) = ∇F (~fk)T (~f − ~fk) +
αk

2
‖~f − ~fk‖22.
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Fig. 2. Plot of a-b plane, where regions are defined in Table
1 and R(a,b) represents the feasible region for the solution of
the separable subproblem (11).

Manipulating F k(~f) leads to the following equivalent opti-
mization formulation:

~fk+1 = arg min
~f∈R2n

1

2
‖~f − ~sk‖22 +

τ

αk
pen(~f)

subject to 0 ≤ ~fc ≤ ~fp ≤ 1,

(8)

where

~sk =

[
~skp
~skc

]
= ~fk − 1

αk
∇F (~fk). (9)

When pen(~f )= ‖~f‖1 =
∑n

i=1 |~fi|, the objective function
in (8) decouples in each variable and can be optimized sepa-
rately, which results in the following scalar optimization:

minimize
fp, fc∈R

1

2
(fp − sp)2+λ|fp|+

1

2
(fc − sc)2+λ|fc|

subject to 0 ≤ fc ≤ fp ≤ 1,

(10)

where fp and fc correspond to each scalar element of ~fp
and ~fc, respectively. Since both fp and fc are non-negative,
the absolute values in (10) can be dropped. Completing the
squares in (10) and ignoring constant terms yield

minimize
fp, fc∈R

ψ(fp, fc) =
1

2
(fp − b)2 +

1

2
(fc − a)2

subject to 0 ≤ fc ≤ fp ≤ 1,

(11)

where a = sc − λ, b = sp − λ. The solution to (11) can be
obtained by partitioning the a-b plane into different regions
(see Fig. 2). Then the minimizer of (11) depends on the region

in which the point (a, b) lies. For example, if (a, b) ∈ R(a,b),
i.e., 0 ≤ a ≤ b ≤ 1, then the minimizer, (f∗c , f

∗
p ), of (11) is

the point (a, b). The complete set of minimizers is listed in
Table 1.

Region Condition a Condition b
(
f∗c , f

∗
p

)
R(a,b) 0 < a < b 0 < b < 1 (a, b)
R(0,b) a < 0 0 ≤ b ≤ 1 (0, b)
R(a,1) 0 ≤ a ≤ 1 b > 1 (a, 1)
R(0,1) a < 0 b > 1 (0, 1)
R(0,0) a ≤ −b b < 0 (0, 0)
R(1,1) a > 1 b ≥ −a+ 2 (1, 1)
R(r,s) a > |b| b < −a+ 2 (r, s)

Table 1. Table representing the solution to (11) as a function
of a and b. Here, r = s = (a+ b)/2.

3. RESULTS

The solution to the problem proposed in the previous section
was implemented using the SPIRAL-`1 algorithm in [15] with
the appropriate modifications to accommodate for the differ-
ent constraints (see (6)). The results obtained are compared to
those of the original SPIRAL-`1 approach in order to evaluate
the validity of the proposed approach on both simulated and
real genomic data.

3.1. Simulated Data

Two simulated test signals, ~fp and ~fc, of length n = 105

were used to examine the effectiveness of the proposed ap-
proach. We varied the coverage of both between 2 and 10,
and the child is chosen to have between 70% to 90% of the
variants in the parent. The true signal for the parent ~fp, is
set to be 0.5% sparse, so that only 500 variants are present.
Furthermore, consistent with the assumption of similar error
term in the measurement of the true signals, a single value of
ε = 0.01 was selected. On the simulated data, we are able
to select the optimum value for τ and found on this data the
optimal τ occurred between 0.5 and 3. Further, we observed
limited sensitivity to τ as the model with and without familial
constraints had a similar τ range.

We first examined the parent signal reconstruction. Fig. 3
illustrates a small segment (n = 2.5× 104) of the parent sig-
nal with cp = 2, cc = 2, and 90% similarity of variants,
the reconstructed signal obtained by the regular SPIRAL con-
straints, and the reconstructed signal obtained by the familial
SPIRAL constraints both at a threshold value of 0.5308. The
improvement in variant predictions is visually clear from this
figure.

We observed that an increase in the coverage of either
child or parent helps improve the quality of the predictions.
Moreover, the greater the similarity between parent and child,
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Fig. 3. From top to bottom: A small segment of the parent
signal with cp = 2, cc = 2, and 90% similarity of variants;
reconstruction using the regular SPIRAL constraints with
τ = 1.779 yielded 152 correctly identified out of 500; and
reconstruction using the familial constraints with τ = 1.221
yielded 349 correctly identified out of 500.

the more helpful adding the familial constraints results. Fig. 4
further illustrates how the familiarly constrained model ranks
all true predictions above all false predictions.

3.2. 1000 Genomes Project Trio Data

We apply our method to the previously sequenced genomes of
the father-mother-daughter CEU trio (NA12891, NA12892,
NA12878) from the 1000 Genomes Project [1]. These
genomes were sequenced to low coverage (≈ 4×) in Pi-
lot 1 of the study and high coverage (≈ 40×) in Pilot 2.
Both were aligned to NCBI36. We compared our recon-
structions against the reported validated set of low coverage
Chromosome 1 deletions longer than 250bp. In addition, we
filtered the set of validated deletions by removing cases that
overlapped the centromeres or telomeres and removed cases
where a reported deletion was marked LowQual for all three
individuals.

We used the GASV [9] method on this dataset as observa-
tions to predict the set of possible SVs. We filtered out SVs
predicted to lie in the centromere or telomeres. We took the
filtered set of predictions as the observed signals, and the true
signals for each individual were constructed by determining
if the validated deletions lie in the region predicted by GASV.

In the reconstruction of the parent signals, we separately
use the child (NA12878) observed signal to constrain the
parent signals. As shown in Figure 5, the reconstructions
of both parent signals improve with the added familial con-
straints proposed by our method. Since NA12878 shares 90%
and 92.5% of deletions with NA12891 (father) and NA12892

Fig. 4. ROC curves depicting the False Positive Rate vs
True Positive Rate for the reconstruction of the parent sig-
nal with cp = 2, cc = 5, and 70% similarity of variants us-
ing both methods with τ = 1.553 for regular constraints and
τ = 1.474 for family constraints.

Fig. 5. ROC curves depicting the False Positive Rate vs True
Positive Rate for the reconstruction of both CEU parent Chro-
mosome 1 signals using both methods with τ = 2.65.

(mother), respectively, we observe higher true positive rates
for false positive rates> 0.1 in the reconstructions with added
child data than the other method.

4. CONCLUSIONS

This paper presents a novel approach for inferring structural
variants (SVs) from noise-corrupted data sets. We exploit the
rare occurrence of SVs by incorporating a sparsity-promoting
`1 penalty regularization term. Furthermore, we mitigate the
deleterious effects of low-coverage sequences by following a
maximum likelihood approach to SV prediction, and, in par-
ticular, using Poisson statistics to model the noise. Finally, we
incorporate the relatedness of individuals as a constraint on
the solution space. Specifically, we use the assumption that a
parent and child are sequenced and require that any SVs pre-
dicted in the child be present in the parent. To our knowledge,
our proposed approach is the first SV detection algorithm to
do so. We demonstrated the effectiveness of our approach on
both synthetic data and data from the 1000 Genomes Project.
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