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ABSTRACT

The aim of this study is to present the first compression and
reconstruction methodology based on patch ordering inpaint-
ing algorithm for monitoring neural activity. This novel in-
painting approach is especially important for the technical re-
alization of implantable neural measurement systems (NMS)
since they are subject to strict resource limitations as area and
energy consumption. Intersection masks with center square
as well as random-based masks are utilized for suitable neu-
ral data compression considering the patch ordering inpaint-
ing. The proposed inpainting methodology outperforms the
structure-based inpainting algorithm and often applied Com-
pressed Sensing strategy with regard to reconstruction qual-
ity of the real measured neural signals. These algorithms fo-
cus on complexity reduction according to hardware on im-
plantable NMS. At high degrees of compression, the patch
ordering inpainting yields well-suited or equal reconstruction
results in contrast to JPEG or JPEG2000, respectively.

Index Terms— Patch Ordering inpainting, Mask, Neural
Signals, Compression/Reconstruction, Permutation

1. INTRODUCTION AND RELATED WORK

Long term recording of brain activity is of growing interest for
general research as well as medical diagnostics. The recorded
neurological data is used in several applications like detec-
tion of epileptic seizures [1], controlling prosthetics [2] or
to gain a better understanding of the function of the human
brain. Traditional measurement equipment utilizes a wired
connection between the electrodes and the recording equip-
ment which forces the patient to stay close to the measure-
ment setup. Since certain measurements for epileptic seizures
can take days, this is a major inconvenience. In general mea-
surements are performed using scalp electrodes placed on the
head. Because of the electrode placement, these measure-
ments are limited in spatial resolution. If a higher resolution is
required, measurements are performed on an open skull using
a multi-electrode-array (MEA) placed on the brain surface.
Due to the open skull, this procedure poses a high risk for
infections and can only be done in a clinical environment.
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Fig. 1. Design of a NMS including an analog front-end
(AFE), an analog-to-digital converter (ADC), a data compres-
sion unit (here a low area and low energy inpainting mask as
FSM) and a low-rate wireless transceiver, modified from [4].

In order to alleviate these drawbacks, implantable neural
measurement systems (NMS) have been developed. These
implants (Tx) are placed below the skull and are capable of
monitoring the brain activity, constantly. The MEA is placed
on the brain surface enabling high spatial resolution. At the
same time, the skull is closed without any physical connec-
tion, which eliminates the risk of infections and the need to
stay inside a sterile environment. The recorded data is trans-
mitted to an external base station (Rx) wirelessly, enabling re-
mote diagnostics during everyday life of the patient. As there
are no physical connections penetrating the skull, the energy
supply has to work wirelessly as well. This severely restricts
the available energy for the implant and requires all utilized
components to work with a minimal amount of energy. Addi-
tionally, the heat dissipation of the implants components has
to be low in order to prevent brain tissue damage caused by a
localized rise in temperature [3].

Since the interpretation of neurological signals requires
a high spatial and temporal resolution, MEA with up to 100
[5] and even 1000 [6] electrodes are used depending on the
application. The temporal resolution is achieved with sam-
pling rates of 15 kHz [7] or 30 kHz [8]. By quantizing with
10 bit [7], data rates of several Mbits are easily generated.
Transceivers approved within the highly constrained envi-
ronment of neurological implants currently do not provide
enough communication bandwidth to transmit this amount of
information. Consequently, this necessitates a data compres-
sion scheme. Standard methods like JPEG [9] are unfeasible
in this application since the required calculation steps like
transformation, quantization, coding etc. result in a high
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Fig. 2. Prime structures of different masks are shown, where
activated samples (kk) are denoted with gray and deactivated
regions (uu) with white: a.) Hatched (hl0), b.) Intersections
(ir0) (c.) with center square (ip0)), d.)-e.) Rectangular (bb0)
grid and f.) random mask (c00).

circuit complexity. Hence, special compression methods are
needed with low complexity at the transmitter.

A possible solution is Compressed Sensing (CS) [10, 11],
which has gained since attention among bio-medical appli-
cations due to its simple compression based on linear com-
binations. While the recovery is more complex, this effec-
tively shifts computational complexity from the implant to the
base-station. This characteristic to shift hardware complexity
is called complexity reduction (CR). The integration of the
CS strategy into analog-to-digital converters lead to promis-
ing hardware-based solutions in NMS [12].

This investigation offers insight into the introduction of
a novel data compression and reconstruction methodology
based on patch ordering inpainting. The applicability of
structure-based inpainting [13] for neural signals has been
shown in previous works [14] with suitable results.

2. PATCH ORDERING INPAINTING

The recovery process based on patch ordering inpainting [15]
using permutation and interpolation is suited for especially
sparse representations. Let A ∈ RM×N be an array consist-
ing of neural signals and Ω ∈ {0, 1}M×N be a logical matrix
called mask, which distinguishes the retained regions (labeled
by 1) from the corrupted/unknown parts (labeled by 0) in A.
The masked parts of the neural array A(Ω) = A ∧ Ω are
not transferred (data reduction) to the base station, where the
mask Ω also has to be known for the recovery. This leads to a
NMS design with less circuit complexity, as shown in fig. 1.

In order to obtain multiple regular signals or rather piece-
wise constant signals for the reconstruction, Np

1 overlapping
patches of dimension P ×P have to be extracted from A(Ω),
arranged in a vector and stored in a so-called patch collection
matrix C ∈ RP ·P×Np . The latter includes the known regions
(information) of A and masked parts labeled by zero.

Furthermore, the reordering of the patches is accom-
plished by a permutation operator p ∈ [1, Np]

Np . The sorting
of the patches is essential for the algorithm and in addition
computationally intensive. An approach which resembles the
cycle spinning method [16] returns the permutation p, which
is used to improve the smoothness of the recorded neural
array and to enhance the efficency.

1Number of extracted patches Np = (M − P + 1)(N − P + 1) in C.
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(a) Mean NMSE depending on patch
size P for a given η ≈ 70%.
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(b) Mean NMSE depending on patch
size P for a given η ≈ 85%.

Fig. 3. Comparsion of inpainting recovery quality for differ-
ent patch dimensions P and compression level η for N=128.

While only columns (vector version of the patches) of C
are affected by the sorting due to the permutation p, the rows
represent the regular signals, which have to be individually
interpolated. Therefore, the known parts of A(Ω) in C act
as the supporting points for a traditional 1D smoothing op-
erator H, e.g. cubic spline interpolation, which is applied to
determine an estimation of the unknown parts in A(Ω). After
relocated the patches to their original positions, the arithmetic
average has to be calculated for the overlapping parts. In or-
der to improve the result of the inpainting reconstruction this
process can be repeated by applying several permutation op-
erators pi in parallel fashion, where 1 ≤ i ≤ K holds.

3. MASK RESULTS

Concerning the implementation of a data compression scheme
with regard to inpainting for neural signals on a fully im-
plantable NMS, selected electrodes in the MEA have to be
activated and deactivated in a specified manner. The spatial
and time pattern in the neural array A is called mask Ω and
must be known on the Tx and Rx side, respectively. Only by
transmitting the activated signal amplitudes at specific spatial
and time samples, the data reduction can be realized.

Figure 2 shows the different types of masks which are an-
alyzed in this work. Here, elementary parts of the individual
masks including hatched, intersections, rectangular or ran-
dom structures are visualized. In the interest of obtaining the
global mask to indicate activated and deactivated electrodes
for the neural recording, the prime structure has to be dupli-
cated and placed side by side on the complete array A.

As introduced in section 2, a quadratic overlapping sliding
window called patch of dimension P ×P is used for ordering
and permutating in the reconstruction procedure in order to
produce a smooth represenation of the neural array. The size
P of the patch and shape of the used mask are crucial for the
quality of the recovery. After having established two figures
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Fig. 4. Evolution of occurrence in % of the information content (entropy) of known data (z axis) depending on the quadratic
patch of size P×P in pix (x-y-plane). Here, the mask Ωd0206ip0 of dimension 48×128 and compression η ≈ 88% is considered.

of merit used in all following examinations, the analysis of the
different masks depending on the patch size will be executed.

In order to assess the suitability of the proposed recovery
algorithm, the normalized mean squared error (NMSE)

NMSE =
‖A0(Ω)− Â(Ω)‖F
‖A0(Ω)‖F

, (1)

is utilized, where A0(Ω) stands for the original array and
Â(Ω) marks the recovery. The letter F in expression ‖ · ‖F
denotes the Frobenius norm. By setting parts of A to zero
due to the mask Ω, the compression ratio η can be defined
by η = 100% [1− |Ω|/(NM)], where M and N imply the
dimension of A and | · | is the cardinality of Ω which corre-
sponces to the number of activated electrodes in the MEA.

Figure 3 presents the mean NMSE of the proposed
inpainting-based data recovery approach as a function of
the patch size P for the introduced types of mask Ω and in
addition two degrees of data reduction η = {70%, 85%} for
neural raw signals. With the exception of the intersection
mask with center square and the random mask, the remaining
mask types exhibit inadequate recovery results for arbitrary
patch sizes. The reason of that are less connected regions
as well as complete deactivated row/columns in Ω. In the
case of lower η, fig. 3a, the mask Ωn0000c85 based on a ran-
dom distribution achieves more suitable NMSE compared to
Ωd06s02ip0 by reason of larger associated regions. The c85
for mask Ωn0000c85 labels that 85% of the entries are set to
zeros and d06 and s02 in mask Ωd06s02ip0 denote the cen-
ter square size and distance to each other, respectively. At
higher compression ratios shown in fig. 3b, this issue is in-
terchanged. Therefore, the intersection mask Ωd02s06ip0 with
center squares obtain better inpainting recovery results for
neural signals compared to random implementations. In ad-
dition, they offer advantages in terms of implementation in
resource-limited systems due to the uniform grid structure.
Hence, intersection masks with center squares are used in all
following simulations in sec. 4.

From a specific patch dimension (in fig. 3a P ≥ 16) a
convergence behavior of the NMSE can be observed, while
increasing P , because the patch collection matrix C does not
contain all zero columns due to the mask geomentry. The all

zero columns corresponding to patches without known sam-
ples (information) deteriorate the results of the 1D smoothing
operator H, which does not lead to regular signals.

Figure 4 illustrates the histograms of the mean informa-
tion content (entropy) of several patch sizes P for the mask
Ωd0206ip0 corresponding to a compression ratio of η ≈ 88%.
The entropy denotes the occurrence of the known data at the
individual positions in the sliding and overlapping patch in
the reconstruction procedure of patch ordering inpainting. In
the field of 2 ≤ P ≤ 15 the histograms exhibit a strong dom-
inant center peak. Thus, a lot of zero patches are included in
C, which leads to an inaccurate recovery results as observed
in fig. 3b. From a patch dimension of P ≥ 16 a low NMSE
level is reached, because the all zero patches are not existing
in the patch collection matrix C for the mask Ωd0206ip0, which
results in a more flat distribution of the mean patch informa-
tion. This point is reached if mod (2(d+ s), P ) = 0 holds.
In order to weight the known data in a uniform fashion, patch
dimension P = 17 is used in the following inpainting recon-
struction simulations for neural signals.

4. SIMULATION RESULTS

The experimental results of the novel data compression and
reconstruction methodology for neural signals based on the
patch ordering inpainting algorithm are now shown in the fol-
lowing. For the inpainting recovery procedure a 1D smooth-
ing by a cubic spline interpolation, two parallel permutation
operations and a patch size of P = 17 are applied. To reduce
the neural raw data on implant side, three masks Ω with dif-
ferent center square sizes with regard to compression ratios of
η = {70%, 81%, 88%} are applied in the simulation.

All simulation results presented in this paper include neu-
ral raw data, local field potentials (LFP), which were recorded
invasively from a male epilepsy patient (human) by a surface
MEA for 24h at the Epilepsy Centre of Erlangen (EZE) [17].
Each neural array A ∈ RM×N contains M time signals with
N samples recorded byM different electrodes. These data ar-
rays were extracted from a 24h medical monitoring and sam-
pled at fS = 1024Hz with a resolution of 16 bits.

CS [10] is implemented in this paper acting as a refer-
ence scheme to evaluate the novel inpainting methodology for
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Table 1. NMSE of the patch ordering inpainting compared
to CS, structure-based inpainting and JPEG for several given
compression η applied on real measured neural data [17].

Method NMSE σNMSE η CR

struct. Inpainting [14] 0.078 ±0.012 62% Yes

This Work (Ωd0602ip0) 0.035 ±0.008 70% Yes
CS (B = 39) 0.343 ±0.105 70% Yes

This Work (Ωd0404ip0) 0.036 ±0.007 81% Yes
CS (B = 24) 0.550 ±0.099 81% Yes

This Work (Ωd0206ip0) 0.038 ±0.009 88% Yes
CS (B = 16) 0.747 ±0.094 88% Yes

JPEG 0.133 ±0.019 88% No

JPEG2000 0.034 ±0.005 88% No

neural signal compression and reconstruction. Equivalent to
the proposed inpainting approach, CS is suited for data com-
pression in resource-limited systems like fully implantable
NMS since both approaches focus on resource efficiency on
implant side. This trait is labeled by complexity reduction
(CR). The used CS framework utilizes a Gaussian-distributed
incomplete system Φ ∈ RB×N to project the signal repre-
sentations in A with time length N onto B observations. In
the following simulations, B = {16, 24, 39} is used to obtain
the desired compression ratios. For the CS framework, η is
defined as η = 100% [1−B/N ]. Based on a sparsity-aware
basis2, sparse signal reconstruction can tractably be rendered
by solving the `1-optimization problem using CVX [19].

Table 1 shows the average of the quality of reconstruc-
tion NMSE for several degrees of data compression η of the
novel inpainting methodology and CS for a large number of
neural signals. By comparing the compression/reconstruction
schemes for neural raw data in resource-limited systems la-
beled by CR=Yes, the proposed inpainting approach outper-
forms CS reference framework in terms of NMSE. In addi-
tion, a structure-based inpainting has been applied from [14]
consisting of a mask Ωo with overlapping rectangular patches
to compress and recover neural raw data. In spite of compres-
sion ratio 62% less than 70%, the structure-based inpainting
generates more than twice as the mean recovery error NMSE
compared to the patch ordering inpainting algorithm. For the
proposed inpainting based on patch ordering the enhancement
of η only effects a small raise of the recovery error as ex-
pected, which yields benefits for high data compression ra-
tios. The reconstruction results can be improved by increas-
ing the spatial inter-electrode correlation of the neural sig-
nals due to correlation-based sorting of the neural array A
in order to increase the image-related structure [4, 14]. With
respect to traditional data compression schemes like JPEG,

2Discrete cosine transform (DCT) is used as basis in this paper [18].

(a) Original neural array. (b) Masked array (Ωd0206ip0).

(c) Result of JPEG2000. (d) Result of proposed inpainting.

Fig. 5. Different presentations of a single neural array A (x-
axis: time, N = 128, y-axis: spatial, M = 48). The signal
amplitudes are visualized in grayscale (black is zero value).

which are unfeasible for resource-limited systems labeled by
CR=No, the introduced inpainting method also yields well-
suited results. While standard JPEG is less effective to com-
press and recover neural signals at a compression ratio of
88%, JPEG2000 and the proposed inpainting methodology
achieves similar recovery quality of less than 4% NMSE.

Figure 5c and 5d visualize the differences of JPEG2000
and inpainting recovery for a neural array at η ≈ 88% and
NMSE < 4% compared to tab. 1. For JPEG2000 recovery a
large amount of artifacts due to the quantization of the block-
based DCT can be observed. The neural array reconstruction
of the inpainting methodology exhibits less artifacts as well
as more regular signals representation and owns the benefits
of complexity reduction on implant side.

5. CONCLUSION

This paper introduces the patch ordering inpainting as a
well-suited data compression and reconstruction methodol-
ogy for neural signals for the first time. This Work focuses
on transfering the complexity from implant to base-station
in resource-limited systems. In fully implantable NMS, this
leads to a benefit in terms of area and energy consumption.
The quality of the recovery as well as the degree of com-
pression strongly depend on the selected inpainting mask.
The evaluation shows that this intersection mask with cen-
ter squares is well-suited for the data reduction and recon-
struction of neural signals. Thereby, the proposed patch
ordering inpainting algorithm achieves promising results, es-
pecially when compared to the structure-based inpainting or
the Compressed Sensing strategy using CVX. At identical
compression ratios, the proposed inpainting approach clearly
outperforms the CS strategy in terms of reconstruction accu-
racy. Even the results of traditional techniques like JPEG2000
can be achieved for large degrees of compression without re-
covery artifactes by the promising inpainting methodology,
which inherits in addition the benefits of reduction of com-
plexity for resource-limited systems.
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