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ABSTRACT

This paper presents a novel single limb body balance analysis
system which will aid medical practitioners to analyze cru-
cial factor for fall risk minimization, injury prevention, fitness
and rehabilitation programs. We use skeleton data obtained
from Microsoft Kinect which captures full human body as
well as ensures user’s privacy. A new eigen vector based cur-
vature analysis algorithm is developed to compute single limb
stance (SLS) duration on the skeleton data. Two parameters
vibration-jitter and force per unit mass (FPUM) are derived
for each body part to assess postural stability during SLS. Ex-
perimental results show the efficacy of our system to apply it
in medical domain.

Index Terms— Kinect, Single Limb Stance Exercise,
Postural Stability, Balance.

1. INTRODUCTION

Synchronized and coordinated activation of the postural mus-
cles of the trunk and lower limbs is required for maintaining
equilibrium and balance in human body. Poor postural bal-
ance control causes injury or falls in huge population and is
supposed to be a critical factor of common motor skills [1].
Several techniques [2] [3] already exist in the literature for
measuring postural control in any stance. Among them Sin-
gle Limb Stance (SLS) [4] is a good option which not only
assesses postural steadiness in a static position by a tempo-
ral measurement (SLS-duration) but also analyses the role of
body joints in postural stability and correction [5]. For clini-
cians, it provides a quick, reliable and easy way to screen their
patients for fall risks and is easily incorporated into a com-
prehensive functional evaluation for older adults. The SLS
cut-off time for patients suffering with Parkinson’s disease is
about 10 seconds and it reflects the highest sensitivity and
specificity measure for fall-history. SLS training for healthy
subjects reduces chances of injury or fall by improving static
balance [6]. Moreover, any balance assessing algorithm needs
to be tested on healthy subject for validation before applying
it on patients. Being a complex mechanism, lack of postural
control also creates postural sway during standing e.g. peo-
ple with low back pain have been observed to have increased
postural sway in standing.

Balance in SLS needs to be assessed in terms of both SLS-
duration [7] and body-sway which can be measured by center
of pressure (COP) movements registered using stabilometry
with force platforms [8]. The COP is very much indicative
of both the center of gravity’s horizontal location and ground
reaction forces due to muscular activity but does not inform
about how postural perturbation creates instability in differ-
ent body parts. Eva et al. [9], considered only amplitude
of COP movements but omitted frequency associated with
each joint vibration whereas clear relationship exists between
the oscillation of COP and center of mass (COM). Recently
marker-based motion analysis systems [10] had been used for
the purpose, but they are obtrusive, expensive and complex.
Yang et al. [11] studied reliability of Kinect for assessing the
standing balance in terms of COM parameters but they did
not discussed about body vibration during SLS in Euclidean
coordinate x,y,z.
Under this circumstance, in this work we have proposed an
automatic unobtrusive system to measure SLS duration and
body balance. For this purpose, vibration-jitter analysis is
performed which gives a clear view of relative variation of
frequency of different joints over time. The whole processing
is done on the skeleton data obtained from Kinect. Skeleton
data is used instead of video which ensures user privacy con-
cerns. The key contribution in this work are as follows:

1. An eigen vector based curvature point detection method
is proposed to calculate SLS duration from noisy skele-
ton data obtained from Kinect and it is found to be bet-
ter than standard curvature detection technique [12].

2. The vibration for different body joints are measured in
terms of frequency variation i.e. vibration-jitter and
force per unit mass (FPUM).

The paper is organized as, in Section 2, SLS balance analysis
is presented which includes dataset creation, noise removal,
SLS duration measurement and vibration analysis. Section
3 contains the results and discussion followed by concluding
remarks in Section 4.

2. METHODOLOGY TO ANALYZE BALANCE IN
SINGLE-LIMB-STANCE

Here static single-limb balance assessment [6] is taken into
consideration using skeleton data obtained from Kinect. SLS
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exercise is opted for analyzing static balance of different
healthy subjects. The flow diagram of our proposed method
is shown in Figure 1.

Fig. 1: Block diagram of proposed methodology

2.1. Dataset Creation

As no standard public dataset exists for static single limb
balance estimation using skeleton data, we create our own
dataset using Kinect [13] [14]. Our experimental setup is
shown in Figure 2. Participants perform the tests with bare
feet, eyes open, arms on the hips looking straight ahead and
standing at 7-8 feet distance away from Kinect. The 3-D
spatio-temporal information about 20 joints are obtained from
Kinect. For ground truth, time synchronized data capture is
carried out using Kinect and Force plate based setup [8]. Sub-
ject’s video is also recorded to validate our experimental find-
ing manually.

Thirty eight healthy volunteer (age: 21-65 years, weight:
45kg-120kg & height: 4ft6inch-6ft5inch) with no pre-existing
symptom of neurological diseases, major orthopedic lesions,
vestibular are examined for single limb balance analysis.
Three of them did not perform the experiment seriously, so
we have discarded their data. Our study is mainly based
on the rest 35 subjects. Intentionally we have included few
sportsmen (like Subject A & B in Table 1) into our exper-
iment to investigate the effect of physical fitness on single
limb balance.

2.2. Noise Removal

Skeleton data obtained from Kinect is very noisy and it is
practically visible when the subject stands completely static,
but some joints are moving in skeleton. There are many pa-
rameters [15] [16] that affect the characteristics and level of

Fig. 2: Data capture setup

noise, which include room lighting, IR interference, quantiza-
tion noise etc. The noisy skeleton data is filtered using method
similar to [17].

2.3. SLS Duration Measurement

During SLS exercise, variation in lifted leg’s ankle co-
ordinates is very much obvious. We have used this fact in
computing SLS duration. The skeleton joints obtained from
Kinect are represented by 3D world co-ordinates (x,y,z) where
‘x’ represents left/right variation, ‘y’ represents up/down
variation w.r.t ground and ‘z’ represents to/from variation of
subject w.r.t Kinect. So here, changes in the lifted leg’s an-
kle y-co-ordinate (say, left leg is lifted) YAnkleLeft can give
us meaningful information about the precise timing when a
subject lifts leg (here, left-leg) above the ground. Figure 3a
clearly legitimizes our claim and shows substantial change in
YAnkleLeft at point R, F and the zone R-to-F is our desired
zone of SLS posture. In the other words, R is the frame
where foot is flexed off the floor and F is the frame where
it again touches the ground. The duration between R & F
is considered as SLS duration. Keeping this fact in mind,
k-means clustering algorithm is used to capture the variation
in YAnkleLeft with time. It helps us in differentiating one leg
stance portion (zone R-to-F). K-means mainly does the seg-
regation (i.e. groups the data into 2 clusters) by optimizing
following equation

O =

2∑
j=1

N∑
i=1

||Y (j)
AnkleLefti

− cj ||, cj =
1

N

N∑
j=1

(Y jAnkleLefti)

where ||Y (j)
AnkleLefti

− cj || is a Euclidean distance between a

data point Y (j)
AnkleLefti

and the cluster center cj . Frames be-
long to R-to-F will form one cluster, whereas rest will group
into another one, as O is the indicator of the distance of the
N data points from their respective cluster centres. Figure 3b
shows output of k-means algorithm i.e. frame A and B which
are far away from our desired frames R and F. Let us consider
data points X in region S-A. We use the fact that the curva-
ture point will lie in the direction of minimum variance of
data. So, we compute covariance matrix X̂X̂T of mean sub-
tracted data X̂ and compute the eigen value decomposition
of the matrix. This is the principle behind Principle Compo-
nent Analysis (PCA) [18] to find the direction of maximum
variance. The eigenvector (say, ~Emin) corresponding to least
eigenvalue provides the direction of minimum variance of the
data and so reveals the direction towards curvature points.
The curvature points R and F are obtained through minimum
projection error of the eigen vector corresponding to smallest
eigen-value using equation 1.

argmin
r

[~Pr − (Pr.û)û] (1)

where ~Pr is the original signal value (YAnkleLeft(r)) at frame
r (or time instance t); û is the unit vector along ~Emin. Finally
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SLS duration is measured by finding difference between time-
stamps corresponding R and F frames.

(a) Variation of YAnkleLeft

(b) Curvature points identified by k-means Clustering

Fig. 3: Curvature point detection using variation of
YAnkleLeft

2.4. Body Vibration Analysis

Balance is generally defined as person’s ability to maintain
or restore the equilibrium with minimum movement or sway
[19]. Balance is assessed as the amount of postural sway of
the human body. Sway is the slight postural movements made
by individual joint in order to maintain balanced position.
During SLS exercise while standing on single limb, subject
oscillates in order to maintain the balance. Moreover, for
a given posture a subject can not move some of the joints
like HipCenter, ShoulderCenter etc. easily and flexibly [20].
Hence, the twenty different joints in the skeleton have differ-
ent degree of freedom (DOF) e.g. it is high for hand but low
for HipCenter. This DOF has strong impact on joint move-
ment.
To measure the oscillation quantitatively, velocity profile of
each joint is used for its vibration analysis. Vibration is com-
posed of frequency and amplitude. Higher frequency indi-
cates more vibration and less balance. The velocity ~V el =
[vx, vy, vz] in all the three directions viz. x, y, z is analyzed
for estimating the vibration or indirectly balance. The veloc-
ity is obtained from the filtered data as following,

~V el = [vjx, v
j
y, v

j
z] =

[xj , yj , zj ]
∣∣
t+δ(t)

− [xj , yj , zj ]
∣∣
t

δ(t)
(2)

where [xj , yj , zj ]
∣∣
t

is the displacement at time t in (x, y, z)

direction respectively for jth skeleton joint. It is observed
from the AnkleLeft’s velocity profile that velocity is maxi-
mum near R and minimum (considering sign) near F. Also
the the mean velocity of AnkleLeft in first segment S-to-R
(see Figure 3a) is almost similar to the the third one, whereas
the velocity in the second is much higher than the other two.
Start (R) and end (F) frames/time of one leg stance posture
have already been identified in the subsection 2.3. Hence,

three different segments namely S-to-R (segment-1), R-to-F
(segment-2) and F-to-E (segment-3) need to be analyzed sep-
arately. This fact is also true for all 20 joints. To get the in-
formation about frequency, every joint data in each segment
is partitioned into a window of 50 samples and Fourier trans-
form of each segment is evaluated as following:

V jk (ω) =

N−1∑
n=0

vjk[n]e
−iωn, i2 = −1; (3)

where V jk (ω) is the frequency response of ith window for jth

joint velocity vjk. This is done for all joints and in all three
directions (x,y,z). Frequency (f jk ) corresponding to the maxi-
mum amplitude (Ajk) in each window is selected and the mean
frequency of each segment is evaluated as following,

f jm =

∑
Ajkf

j
k∑

Ajk
(4)

Using above equation 4, mean frequencies f jm
∣∣
S−to−F ,

f jm
∣∣
R−to−F , f

j
m

∣∣
F−to−E in each segment are computed.

These calculated mean frequencies will eventually help us
to analyze relative frequency variation (vibration) in cor-
responding segments i.e. before, during and after SLS. In
this work, the relative frequency variation is considered as
vibration-jitter (in Hz) and for each segment it is mathemati-
cally modeled using following equation

J1,2,3 = (f jm − f
j
∀k)
∣∣
1,2,3

(5)

where J1,2,3 is vibration-jitter and f jm is mean frequency in
each segment whereas f j∀k is the frequency for all windows
in each segment. J1,2,3 also quantifies vibration in terms of
frequency for three segments, where more vibration indicates
worse balance. For convenience, we will use the term jitter
instead of vibration-jitter in rest of the article.
The dominant component of velocity for each window can be
written as vjk[n] = Ajkcos(2πf

j
kn) where f jk is the frequency

corresponding to the maximum amplitude Ajk in kth window
for jth joint of each segment.
It is evident from Biomechanics [21] that during SLS, the
force imposed on each joint to restore the equilibrium state
is due to body weight, abductor muscles force and joint re-
action force. This force can be a good measure for joint bal-
ance estimation. Keeping these facts in mind, the reaction
force per unit mass (FPUM = force(F )

mass(m) in meter/second2)
for each joint is measured as the rate of change of velocity for
that joint, i.e. acceleration (a). This can be better explained
using Newton’s law of motion i.e. F = ma⇒ a = F

m .

3. RESULTS AND DISCUSSION

This section comprises of the results for SLS duration, jitter
and FPUM measurements for estimating total body balance
in SLS exercise. We have experimented on 35 subjects and
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Table 1: FPUM comparison for 4 subjects for three joints. (A,B = sportspersons, but C,D don’t practice any kind of exercises)

Fig. 4: Comparison of SLS duration for 35 subjects using
Bland-Altman plot. (a) Proposed algorithm with GT, (b) [12]
vs. GT

have analyzed the results in all three directions, but due to
space constraint we are restricting our jitter and FPUM results
only in x-direction and reporting FPUM comparison matrix
for only 4 subjects in Table 1.
The SLS duration computed from skeleton data using pro-
posed curvature point detection algorithm (mentioned in 2.3)
and state-of-the-art technique [12] are compared with the SLS
duration obtained from Force Platform based System (Ground
Truth/GT) where change in ground reaction force is tracked
to get the same. The difference shown using Bland-Altman
plot in Figure 4 is mainly plotted against their mean, the mean
difference and its 95% confidence levels. Figure 4(a) clearly
reveals that the measurements made by proposed method is
very much close (max absolute difference 238.3ms) to the
ground truth whereas duration computed using [12] is far off
from GT (shown in 4(b)). This is due to noisy skeleton data
which our eigen vector based curvature analysis algorithm
can better handle.

For a particular subject “A”, the results for body vibration
analysis is shown in Figure 5. As discussed in subsection 2.4,
it is quite clear that each and every joint has different order
of vibration during SLS. Based on this, for every subject we
have analyzed jitter and FPUM (in x-plane) for three joints
from upper (ShoulderRight), mid (HipCenter) and lower body
(KneeRight). Figure 5(a) clearly depicts that the vibration
in ShoulderRight is greater than HipCenter but lower than
KneeRight and the observation holds good for all three seg-
ments (S-to-R, R-to-F and F-to-E). It is mainly because when
body’s center of gravity changes during SLS, different body
parts having different degree of freedom behave differently
to maintain postural stability [21]. For subject “A”, the extent
of change is high in KneeRight than HipCenter & Shoulder-
Center. Figure 5(a) also reflects the same. Similar fact is also
verified by observing the recorded SLS video of subject “A”.

Moreover, the jitter in segment-1 (S-to-R) and segment-3 (F-
to-E) are comparable but much less than segment-2 (R-to-F),
as body vibration is more during one leg stance. Although the
results are given for three joints in Figure 5, but the same pat-
tern i.e. J |S−to−R ≈ J |F−to−E << J |R−to−F is followed
by other joints. The above finding is also valid for FPUM
based balance analysis as presented in Figure 5(b). The val-
ues mean ± std listed in Table 1 demonstrate how FPUM
changes for segment-1, 2, 3 for different subjects and joints.
It is also noticed that for every subject either physically fit or
unfit, FPUM required to maintain body equilibrium is much
in segment-2 than segment-1 and 3. The FPUM value listed
in Table 1 for segment-2 is almost 50-100 (e.g. subject 4:
100) times greater than segment-1 & 3 for HipCenter and
there is substantial difference for other joints too. However,
the results for 4 subjects are presented here but the analysis
on several others reveals that the jitter and FPUM values (Ta-
ble 1) for physically fit subjects is much less than unfit one,
which also supports the medical fact in [22].

Fig. 5: Body vibration analysis for a particular subject (a)
Jitter for different joints for 3 segments, (b) Force-per-unit-
mass for different joints for 3 segments

4. CONCLUSION

In this paper quantification of balance using single limb
stance (SLS) exercise is proposed and tested on 35 healthy
subjects with various fitness level, age, height, weight etc. An
effective curvature finding algorithm is proposed which per-
forms better than [12] to find the SLS duration from skeleton
data. The quantitative measurement of vibration is formu-
lated in terms of relative frequency variation and force per
unit mass (FPUM) for each joint. Results indicate that the
vibration jitter and FPUM during one leg stance varies with
subjects physical fitness level and is much higher than bipedal
one. But how these bio-markers (age, height, BMI etc.) affect
single limb balance will be our future scope of research.
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