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ABSTRACT
Autism spectrum disorders (ASD) are neurodevelopmental
disorders which affect a persons ability to interact with the
world around him/her. Emerging studies have shown abnor-
mal postural control in people with ASD. The aim of this
study was to enable the classification of adults with ASD
and typically developed (TD) adults based on force plate
measurements of centre of pressure. Nineteen typical adults
and eleven adults diagnosed with ASD primarily high func-
tioning autism or Asperger’s syndrome participated in this
study. A correlation-based feature selection algorithm was
used to evaluate the quality of the attributes and the results
have achieved up to 0.976 classification accuracy.

Index Terms— Autism spectrum disorder, classification,
correlation-based feature selection, frequency analysis

1. INTRODUCTION

Autism spectrum disorders (ASD) are neurodevelopmental
disorders of complex origin; they are characterised by signif-
icant difficulties in communication, social interaction, repet-
itive interests and behaviours [1]. ASDs include autism, As-
pergers syndrome and pervasive developmental disorder not
otherwise specified [2]. A South Korean study (n=55,266)
estimated the population prevalence of ASDs to be 2.64% [3]
whereas in United States, the prevalence rate for ASDs has
been reported as 0.91% [4]. The prevalence rate for ASD has
increased over the years and the lifetime cost of raising a child
with ASD is currently between USD $1.4 million to $2.4 mil-
lion [5]. This results in enormous financial and personal costs
to both families and communities.

Whilst impairments in communication and social interac-
tion are the core symptoms for ASDs, emerging studies have
reported abnormal postural control for individuals with the
disorders [6]. Poor control affects physical functioning by re-
ducing the ability to perform activities of daily living and po-
tentially impacts on the psychosocial functioning of individ-
uals [7]. Thus, if individuals with ASD have impaired pos-
tural control, this could lead to significant motor and social

difficulties [8]. In order to evaluate the postural stability of
a human subject, centre of pressure (COP) measures derived
from a force platform during quiet standing are used in both
clinical and research settings [9]. The COP trajectory data is
usually characterised spatially in the anterior-posterior (AP)
and medial-lateral (ML) directions. The COP data can fur-
ther be analysed in time domain, frequency domain or hybrid
of both domains [10, 11]. Studies using COP range in AP
direction and ML direction, for sway area and sway velocity
have shown that children with ASD have a different pattern
in postural control as compared with TD children [12, 13].
Moreover, poor postural control persisted into adulthood with
ASD [8, 14].

The aim of this study was to classify TD adults and adults
diagnosed with high functioning ASD primarily or Aspergers
Syndrome based on COP measurements during quiet stand-
ing. Top data mining tools such as decision tree [15], naı̈ve
Bayes [16], support vector machine [17], K-nearest neighbour
[18] as reference in [15] and random forest [19], multilayer
perceptron neural network [20] and Bayesian network [21]
were used for classification. In addition, correlation-based
feature selection [22] algorithm was used to evaluate the wor-
thiness of the COP features. The area under receiver oper-
ating characteristic (AUC) results have revealed up to 0.976
accuracy from 20 seconds with 50% overlapping dataset.

2. METHODS

2.1. Participants

Recruitment was through advertising in social media and
snowball sampling. Nineteen TD adults aged between 19 and
35 (Mean 23.5 ± 5.05) and eleven adults diagnosed with high
function autism or Aspergers Syndrome aged between 19 to
40 (Mean 23.58 ± 7.9) participated in this experiment. Each
participant provided their written informed consent prior to
participation. The study was approved by the Curtin Uni-
versity Human Research Ethics Committee (Approval No:
PT250/2013).
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Table 1. Datasets with various sample size and duration
Sampling TD group ASD group Total

period samples samples
5 437 253 690
10 209 121 330
20 95 55 150

2.2. Data Acquisition

Centre of pressure data was obtained using AMTI AccuGait
portable force platform (Advanced Mechanical Technology,
Watertown MA, USA). Data was recorded using in-house
custom made program written under LabView (National In-
struments Corporation, Austin TX, USA), and was sampled
at 100Hz.

2.3. Experimental Protocol

Potential candidates were familiarized with the procedure,
completed a questionnaire assessing inclusion and exclusion
criteria and were provided with the opportunity to ask any
questions prior to participation. Once the written informed
consent was completed and it was verified that the participants
met the criteria, the height and weight of the participants was
then measured. Participants attended a single session where
they undertook a set of experimental trials in quiet stand-
ing. This paper reports on the baseline assessment of quiet
standing which occurred at the start of the session.

The participants task was to stand on a force plate at a set
distance of 1.5 meters from a white wall with a black horizon-
tal line running at a height of 165cm from the floor. Move-
ment of the COP with respect to AP and ML directions were
calculated using force and moment data extracted while the
participants stood on the portable force platform (Advanced
Mechanical Technology, Watertown MA, USA). The record-
ing was taken over 60 seconds with vision available for each
participant.

2.4. Data Processing, Parameters Settings and Analysis

Subsequent processing were done using Matlab 2014a (Math-
works Inc, Natick MA, USA) and Weka [23]. Of the thirty
two adults who participated in this study, two adults (one TD
adult and one adult with ASD) were excluded due to hardware
issues. Since the recording was over 60 seconds, the sample
size was expanded by generating more samples with shorter
duration and 50% overlap. Thus, there were 5 second, 10
second and 20 second sampling duration datasets with 50%
overlap. The 40 second and 60 second sampling durations
were ignored due to small sample size for classification. The
details of datasets are shown in Table 1.

Descriptive measures (in both time and frequency do-
mains) of each COP duration were calculated in anterior-

Table 2. The distribution of feature vectors
Notation Feature No. of

Set Features
A Time-domain 28
B Frequency-domain 14
C Time and frequency domain 42

posterior (AP) direction and medial-lateral (ML) direction.
Resultant distance (RD) which denoted as the vector distance
from the mean COP point was also calculated for the mea-
surements. The COP measurements include time domain
measures such as mean distance (RD, AP, ML), resultant
sway path, sway path (AP, ML), standard deviation (AP,
ML, RD), amplitude of COP displacement (AP, ML), resul-
tant mean velocity, mean velocity (AP, ML), total excursion
(COP, AP, ML), max distance, area (95% of COP data, 95%
confidence circle area, 95% confidence ellipse area), sway
area, mean frequency (COP, AP, ML), fractal dimension (pla-
nar dimension, confidence circle, confidence ellipse) and
frequency domain measures such as total power, mean power
frequency, peak frequency, power frequency (50%, 95%),
centroid frequency and frequency dispersion. For the details
of the time and frequency domain measures can refer to Prieto
et al. [10]. The frequency domain measures were calculated
from range 0.15 Hz to 5.0 Hz as in references [10, 11]. The
power spectral density of AP and ML direction was com-
puted using Welchs periodogram technique by dividing the
data into 7 segments with 50% overlap. The distribution of
the feature vectors is shown in Table 2.

Top data mining tools such as decision tree, naı̈ve Bayes,
support vector machine and k-nearest neighbour as recom-
mended by Wu et al. [15] and few additions such as random
forest, multilayered perceptron neural network and Bayesian
network were used for comparison and classification in this
paper. Brief explanation and parameters settings of the algo-
rithms were written below.

Decision tree decided the target class of a new sample
based on selected features from available data using the con-
cept of information entropy. The nodes of the tree were the
attributes, each branch of the tree represented a possible de-
cision and the end nodes or leaves were the classes. Pruning
was used to avoid overfit the training data. Next is the ran-
dom forest, it worked by constructing multiple decision tree
on various sub-samples of the datasets and output the class
that appeared most often or mean predictions of the decision
trees. In the experiment, the random forest consisted of 100
trees with each tree considered 6 random COP measurements.
The third classifier was the naı̈ve Bayes classifier which based
on Bayes theorem with strong independent assumptions be-
tween features. The forth is the multilayered perceptron neu-
ral network, a non-linear feed-forward network model which
mapped a set of inputs x onto a set of outputs y using multi
weights connections. The network was trained by updating
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the weight and bias value using gradient descent. One hid-
den layer was used in this paper, and the number of hidden
neurons was calculated based on the number of features plus
the number of class divided by two. The learning rate was set
to 0.3, the momentum was set to 0.2 in each weight updat-
ing and the number of epoch for each training time was set
to 500. There was a validation set which used to terminate
the training when the validation set error got worse 20 times
in a row. Bayes network was a probabilistic graphical model
for reasoning under uncertainty, where the nodes represented
discrete or continuous variables and the links represented the
relationships between them. The initial count of the values,
alpha was set as 0.5 and estimated directly from the data. Hill-
climbing algorithm was used to search for the structure of the
Bayesian Network. Support vector machine was used to dis-
criminate a set of high-dimension features using one or sets
of hyperplanes that gave the largest minimum distance to sep-
arates all data points among classes. Sequential minimal op-
timization was used to train the support vector machine and
polynomial kernel was selected to perform non-linear clas-
sification on high dimensional samples to a higher dimen-
sional space. Lastly, K-nearest neighbour was an instance-
based learning algorithm that stored all available data points
and classified the new data points based on similarity measure
such as distance. There was no distance weighting for the set-
ting and Euclidean distance was used to search for the nearest
neighbour.

In order to evaluate the performance of the algorithms,
a 10-fold cross validation was used to assess how accu-
rately a model performed in practise. Unlike precision and
recall which depended on particular threshold, the area un-
der receiver operating characteristic (AUC) was determined
by plotting true positive rate versus the false positive rate
in various threshold value. Thus, AUC was emphasized to
measure the performance because it did not depend on any
threshold. In addition, correlation-based feature selection was
used to evaluate the worthiness among the subsets of features
which were highly correlated with the classes while having
low inter-correlation among each other [22]. The space of
feature subset was searched using a greedy hill-climbing al-
gorithm. Furthermore, the features were selected based on
10-fold cross validation. In this paper, only those features
that appeared in 5 fold or greater were considered.

3. RESULTS AND DISCUSSIONS

In this section, the AUC results from 5, 10 and 20 seconds
sampling period datasets using decision tree, random for-
est, naı̈ve Bayes, multilayered perceptron neural network,
Bayesian network, support vector machine and K-nearest
neighbour were presented. The results were classified on
time-domain features (feature set A), frequency-domain fea-
tures (feature set B) and both time and frequency-domain
features (feature set C). The AUC results from 5, 10 and 20

Table 3. AUC classification results on 5 seconds sampling
period dataset

Classifier Feature Set
A B C

Decision Tree 0.788 0.580 0.771
Random Forest 0.831 0.809 0.848
Naı̈ve Bayes 0.808 0.687 0.804
Multilayer Perceptron 0.827 0.760 0.823
Bayesian Network 0.826 0.748 0.826
Support Vector Machine 0.745 0.621 0.772
K-Nearest Neighbour 0.727 0.623 0.726

Table 4. AUC classification results on 10 seconds sampling
period dataset

Classifier Feature Set
A B C

Decision Tree 0.819 0.604 0.850
Random Forest 0.916 0.872 0.927
Naı̈ve Bayes 0.837 0.751 0.855
Multilayer Perceptron 0.876 0.808 0.935
Bayesian Network 0.872 0.716 0.882
Support Vector Machine 0.777 0.747 0.830
K-Nearest Neighbour 0.792 0.665 0.830

seconds sampling period datasets are shown in Table 3, 4 and
5.

From the observation of the tables (Table 3, 4 and 5), the
AUC results in feature set A have shown greater results com-
pare to the ones in feature set B, suggesting that time-domain
features are more significant than frequency-domain features.
Subsequently, the AUC results resulting from the combina-
tion of both time and frequency domain features (feature set
C) in 5 seconds sampling period datasets have reported not
much significant compare to the AUC results classified us-
ing only the time-domain features. However, the AUC re-
sults computed from feature set C in 10 and 20 seconds sam-
pling datasets have shown greater results compare to feature
set A or feature set B, thus suggest a minimum of 10 seconds

Table 5. AUC classification results on 20 seconds sampling
period dataset

Classifier Feature Set
A B C

Decision Tree 0.844 0.711 0.868
Random Forest 0.961 0.894 0.973
Naı̈ve Bayes 0.881 0.696 0.918
Multilayer Perceptron 0.924 0.856 0.974
Bayesian Network 0.826 0.748 0.826
Support Vector Machine 0.745 0.621 0.772
K-Nearest Neighbour 0.727 0.623 0.726
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Table 6. Correlation-based features on 20 seconds sampling
period dataset

Feature Correlation-based Features
Set

A∗

Resultant mean velocity, sway area,
fractal dimensions (confidence ellipse),
95% confidence ellipse area, total excursion,
mean velocity (AP,ML)

B∗ Total power (AP,ML),
50% of power spectrum (AP,ML)

C∗

Resultant mean velocity, sway area,
fractal dimensions (confidence ellipse),
95% confidence ellipse area, total excursion,
mean velocity (AP,ML), 50% of power
spectrum (AP,ML)

Table 7. AUC classification results on 20 seconds sampling
period dataset from correlation-based features

Classifier Feature Set
A∗ B∗ C∗

Decision Tree 0.866 0.635 0.927
Random Forest 0.970 0.847 0.976
Naı̈ve Bayes 0.952 0.837 0.972
Multilayer Perceptron 0.943 0.860 0.962
Bayesian Network 0.949 0.639 0.949
Support Vector Machine 0.824 0.619 0.866
K-Nearest Neighbour 0.863 0.755 0.909

sampling period is required to pick up useful information in
frequency-domain. Among the datasets, multilayered percep-
tron neural network and random forest are the best performed
classifiers to discriminate between TD adults and adults with
ASD with up to 0.974 AUC in former classifier and 0.973
AUC at the latter classifier.

Correlation-based feature selection was used to compute
the worthiness of the features among the feature set. In the
next experiment, the feature extraction algorithm was used
on the 20 seconds sampling period dataset as the dataset had
reported the highest AUC results among the three datasets.
The selected features are presented in Table 6 and the AUC
results are presented in Table 7.

In Table 6, feature set A∗ denotes as features selected
from time domain, feature set B∗ denotes as features selected
from frequency domain and feature set C∗ denotes as features
selected from both time and frequency domains. 7 features
are selected in feature set A∗, 4 features are selected in fea-
ture set B∗ and 9 features are selected from feature set C∗.
All the features in feature set C∗ appear to be in feature set
A∗ and feature set B∗ except total power in AP or ML. The
reason is because the total power feature is having low corre-
lation (total power AP appear in 2 fold and total power ML

appear in 3 fold), thus were not selected.
The AUC results from the selected correlation-based fea-

tures on 20 seconds sampling period dataset were presented in
Table 7. The results in feature set A∗ from various classifier
have shown up to 0.97 AUC. Even though the highest results
from Feature set B∗ were lower as compare to Feature Set
A∗, the table had reported better AUC results using selected
features from both domains (feature set C∗). Random Forest
is the best performed classifier with 0.97 AUC in feature set
A∗ and 0.976 AUC in feature set C∗ whereas Multilayer Per-
ceptron has the best AUC result in selected frequency domain
with 0.86 AUC result. The AUC results from Nave Bayes are
close to those performed by random forest and multilayer per-
ceptron neural network, suggesting that these three classifiers
are suitable to classify TD adults and adult with ASD.

The findings of this study were consistent with previous
reported findings regarding the selected features describing
COP. Specifically the findings support larger mean veloc-
ity with children with ASD [17, 18] and greater sway area
[10]. Even though the supporting studies here were mostly
children, there were studies reported postural control was
underdeveloped with children with ASD and never achieved
adult levels [21]. Thus, deficient postural control persisted
into adulthood with ASD [13]. This study had reported that
frequency domain COP features such as 50% of power spec-
trum in AP or ML are important in distinguishing adults with
autism from typically developed adults. Furthermore, the
AUC result of this work is higher than a recent diagnostic al-
gorithm which reported 0.89 AUC [24]. It would be valuable
to include frequency domain COP measurements in future
research in postural control in autism. Moreover, since the
preliminary classification performance were more than 0.90
AUC (considered as excellent), there was no subsequent at-
tempt at fine tuning the parameters of individual classifier to
achieve further improvement.

4. CONCLUSION

Resultant mean velocity, mean velocity in AP and ML, 95%
of confidence ellipse area, sway area, total excursion, fractal
dimensions confidence ellipse and 50% of power spectrum
in combination discriminate adults with ASD and TD adults.
With a sampling period of 20 seconds, random forest man-
aged to achieve 0.976 AUC. Future research is required to ex-
tend the classification of COP features to develop a potential
screening tool for ASD in childhood.
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