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Abstract— To date most pain studies have focused on spinal cord
or peripheral pathways. However, a complete understanding of pain
mechanisms requires the study of neocortex. Using an animal model of
acute pain, we investigate neural codes for pain at both single-cell and
population levels. We propose a statistical framework, rooted in state
space analysis, for analyzing neural ensembles recorded from the rat
primary somatosensory cortex (S1) and anterior cingulate cortex (ACC)
during a laser pain stimulation protocol. The state space analysis allows
us to uncover a latent state process that drives the observed ensemble
spike activity, and to further detect the “neuronal threshold” for pain
on a single or multiple-trial basis.

I. INTRODUCTION

Pain is the most common reason Americans access the health
care system, the leading cause of disability, and a major contributor
to health care costs. In basic and translational pain research,
animal models are pivotal for understanding the mechanisms of
pain and for the development of effective therapy for its optimal
management [11]. Research over the last 50 years has resulted in
a better understanding of spinal and peripheral mechanisms for
pain. Nevertheless, brain circuits that regulate pain, especially the
affective component of pain, remain incompletely understood. Such
understanding, however, is vital to the knowledge of how the brain
processes sensory and affective information, and it could lead to
novel therapeutic strategies.

We use a rat model to study acute conceptive pain. Acute nonci-
ceptive pain is caused by stimulation of peripheral nerve fibers that
respond only to stimuli exceeding harmful intensity, e.g., thermal,
mechanical, and chemical nociceptors; whereas neuropathic pain is
caused by damage or disease affecting the somatosensory nervous
system, which may be associated with abnormal sensation called
dysesthesia or pain from normally non-painful stimuli (allodynia).
The experience of pain in the brain derives from the combined
activity of a large network of neural structures. Among many
brain regions, the primary somatosensory cortex (S1) and anterior
cingulate cortex (ACC) are two of the most studied areas for pain-
related perception. The S1 encodes the sensory component of pain,
whereas the ACC has been widely hypothesized to encode the
aversive component of pain [2]. Furthermore, previous studies have
established that activities in the S1 and the ACC are altered by
pain stimulus [10], [19], [17], [8]. However, very few studies were
devoted to population analysis in awake freely moving animals
[19]. A great challenge is to identify relevant neural ensembles that
drive pain behavior. The identification of such neuronal ensembles
could effectively provide a “neural code” for pain. It is even more
important to design algorithms that enable us to read out the neural
code or pain based on the ensemble spike activity in a single trial,
which will provide a basis for future brain-machine interface (BMI)
applications.
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In this paper, we propose a statistical framework for detecting
neuropathic pain based on ensemble spike activity recorded from
rat ACC and S1 areas in response to laser noxious stimuli. Our
approach employs state space analysis [3], [4] and variational
inference for a latent Gaussian state space model (SSM) with
Poisson observations. The state space approach allows us to perform
smoothing on the latent variable that drives single-trial temporal
firing rate of neuronal ensembles, and to estimate the confidence
intervals. We verify our method with experimentally recorded en-
semble spike data and discuss its extension for online applications.

II. NEURAL CODES OF ACUTE PAIN

From the perspective of neural coding of pain, we ask whether
the ACC and/or S1 neuronal spike activities represent or encode
the pain stimulus, at both single neuron and population levels.
Typically, single neuronal spike activity is recorded from multiple
trials of stimulus delivery, from which one can plot the PSTH
(peri-stimulus time histogram). To identify a “pain-responsive” unit,
we use the following statistical criteria: (i) Based on the spike
rates confidence intervals (shaded area), if the lower bound of
the post-stimulus firing rate is above the upper bound of the pre-
stimulus (baseline) firing rate, we will conclude there is a significant
firing rate increase and the unit is a “positive responder”. (ii)
Alternatively, if the upper bound of the post-stimulus firing rate
is below the lower bound of the pre-stimulus firing rate, then there
is a significant firing rate decrease and the unit is a “negative
responder”. (iii) The first time point that the spike rate meets
the first or second criterion will be used to define the latency.
Figure 1 presents three representative examples of both positive and
negative responders of pain stimulus. In our empirical observations,
we have noticed that positive, negative and non-responsive units
are simultaneously present in the ACC or S1 neuronal population
(which was not reported in [10], [19]). Furthermore, the latency
of individual neuronal responses vary, even under the same pain
stimulus intensity.

Note that the above criteria have several limitations. First, the
PSTH and confidence intervals rely on multiple trial averages;
therefore, it is not applicable to single-trial analysis. Second, there is
no temporal smoothing in the PSTH or Z-score. Note that although
the Z-score can be computed based on time average on the single-
trial firing rate, it is typically very noisy due to lack of smoothing.
In addition, we would also like to obtain the uncertainty estimate
of the single-trial Z-score. To address these issues, we propose a
statistical analysis framework to analyze the population codes for
encoding acute nonciceptive pain. Specifically, we develop a state
space model (SSM) to detect the “neuronal threshold” for acute
pain response on a single-trial basis.

At the single cell level, we often observe trial-to-trial variability
of neuronal firing (see the raster plot). Similarly, at the population
level, we also see a large variability between single trials, for either
S1 or ACC neuronal ensembles. The sources of “neural” variability
may be caused by (i) physical properties of the laser and skin
conductance, or (ii) animal’s internal brain state, or both.
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Fig. 1. (A) Spike raster plots of one ACC neuron and two S1 neurons
recorded from behaving rats. Trials are aligned by the onset of paw
withdrawal time. (B) PSTH (solid line) and confidence intervals (shaded
area), bin size: 50 ms. (C) Z-score of the firing rate. The Z-score is defined
by z = x−µ

σ
, where µ and σ defines the mean and standard deviation of

baseline firing rate (averaged over time and trials). Horizontal dashed lines
mark ±1.65 (equivalent P -value 0.05).
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Fig. 2. Examples of spike activity from twelve S1 neuronal ensembles in
three trials. Time zero marks the onset of paw withdrawal.

III. METHODS

A. State Space Analysis

Let k = 1, . . . , T denote the discrete-time index of a univariate
or multivariate time series, which can be continuous or discrete
(e.g., spike count data) with a predefined bin size. Let yk =
[y1,k, . . . , yC,k]> denote a C-dimensional neuronal population vec-
tor, with each element denoting the observed neuronal spike count.

Motivated by the work of [16], [1], we develop a latent Gaussian
model with Poisson observations. We assume that the latent variable
zk ∈ Rm represents the unobserved common input that drives the
neuronal population firing and it follows a Markovian process

zk = Azk−1 + εk (1)

ηk = Czk + d (2)

yk ∼ Poisson
(

exp(ηk)
)

(3)

where εk ∈ N (0,Q) and z1 ∈ N (0,Q1) specify temporal
priors on the latent process. The state equation (1) is a first-
order autoregressive (AR) model, with a state transition matrix
A ∈ Rm×m, and the observation equation is a generalized linear
model (GLM) that employs the exponential link function through

ηk. The parameters d,C or ηk are unconstrained, and C can
be a full (C-by-m) matrix, which allows the possibility that the
individual neuronal firing is influenced by the latent population
dynamics.

In terms of model identifiability, the latent process is subject
to scale and sign ambiguity. If the latent state is univariate (i.e.,
m = 1), we may compute a scaled variable from ẑ1:T

Z =
z −mean of zbaseline

SD of zbaseline
(4)

which is known as the Z-score. Since the Z-score is standard
normally distributed, we convert it to the one-tailed P -value: 1

P (Z > z) = 1− P (Z ≤ z) = 1−
∫ z

−∞

1√
2π
e

−u2

2 du (5)

When Z > 1.65 or Z < −1.65, it is concluded that the population
significantly increases or decreases its firing (one-sided P=0.05)
with respect to the pain stimulus, respectively. The normalization
in (4) resolves the scale ambiguity of zk, and the sign ambiguity
can be resolved from the algebraic signs of zk and C.

When the latent state is multivariate (i.e., m > 1), we can
similarly derive the P -value from the cumulative probability of
the multivariate normal distribution. In MATLAB, the one-sided
P -value is 1−mvncdf(z,µ,Σ), where µ and Σ denote the time-
averaged mean and covariance of latent variable in baseline.

B. Inference

Let Θ denote all unknown parameters (i.e., Θ =
{A,C,d,Q,Q1}). Because of non-Gaussian likelihood, the
E-step of traditional expectation-maximization (EM) algorithm will
be intractable. Therefore, some Gaussian approximation methods
can be employed [15], [16], [1], [9]. Specifically, we employ
an efficient dual variational inference algorithm [9], where the
unknown parameters are initialized based on a subspace method
[13]. Specifically, let z = [z1, . . . , zT ] denote the joint latent state
variable accumulated in time; the goal of variational inference is to
optimize the variational lower bound of the marginal log-likelihood

log p(y1:T ) = log

∫ T∏
k=1

p(yk|ηk)p(z)dz

= log

∫
q(z)

∏T
k=1 p(yk|ηk)p(z)

q(z)
dz

≥ Eq(z)
[

log

∏T
k=1 p(yk|ηk)p(z)

q(z)

]
(6)

where ηk = [η1,k, . . . , ηC,k] is the natural parameter, and p(z) =
N (0,Λ−1) denotes the prior with a tri-diagonal covariance struc-
ture of size (mT ×mT )

Λ =

 Q−1
1 + AQ−1A> A>Q−1

Q−1A Q−1 + AQ−1A> A>Q−1

. . .
. . .

. . .


and q(z) = N (z|m,V ) denotes a variational Gaussian posterior
with mean m and covariance V .

1In MATLAB (The MathWorks Inc., Natick, MA) implementation, we
have the one-sided P-value as 1 − normcdf(Z, 0, 1), where normcdf
denotes a normal cumulative distribution function.
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In variational inference, we optimize the lower bound of
log p(y1:T ), which has the following form

L(m,V |Θ) =
1

2

(
log |V |)− tr[ΛV ]−m>Λm

)
+

T∑
k=1

Eq(z)[log p(yk|ηk)] (7)

In the E-step of the EM algorithm, the dual variational infer-
ence of {m,V } uses a convex dual optimization method [9]
(with T variational parameters) embedded with forward-backward
Kalman smoothing (which computes the sufficient statistics ẑk|T =
E
[
zk|y1:T

]
, Pk|T = E

[
(zk−ẑk|T )(zk−ẑk|T )>

]
and Pk,k−1|T =

E
[
(zk − ẑk|T )(zk−1 − ẑk−1|T )>

]
). At the backward step, it

computes

Wk = Pk|kA
>P−1

k+1|k (8)

ẑk|T = ẑk|k + Wk

(
ẑk+1|T − ẑk+1|k

)
(9)

Pk|T = Pk|k + Wk

(
Pk+1|T −Pk+1|k

)
W>

k (10)

Pk,k−1|T = Wk−1Pk|T (11)

In the M-step, we optimize {C,d} using Newton’s method to solve
∂L
∂C

= 0 and ∂L
∂d

= 0, and estimate {A,Q,Q1} with a closed-form
solution as follows

Â =

( T∑
k=2

E
[
zkz
>
k−1|y1:T

])( T∑
k=2

E
[
zk−1z

>
k−1|y1:T

])−1

(12)

Q̂ =
1

T − 1

T∑
k=2

(
E
[
zkz
>
k |y1:T

]
− ÂE

[
zkz
>
k−1|y1:T

])
(13)

Q̂1 = E
[
z1z
>
1 |y1:T

]
− ẑ1|T ẑ>1|T = P1|T + ẑ1|T ẑ>1|T (14)

We run the EM algorithm for a fixed number of iterations or the
incremental increase of objective function is less than 10−4. The
algorithm often converges within a few hundreds of iterations.

Notes: (i) The above inference procedure is equally applicable
to single-trial or multiple-trial data, in the latter stage the log
likelihood will be summed over many trials. (ii) To select the
dimensionality of zk, in the case of multiple trials we use cross-
validation; whereas in the case of single trials, we can use the
Bayesian information criterion (BIC). In most single trials, it is
found that m = 1 yields the best result. (iii) For m > 1, there are
sign, scale, and permutation ambiguity for displaying ẑk.

C. Simplified Models

Modeling multi-unit activity: We can sum up all spike activity
of sorted single units and obtain the multi-unit activity (MUA).
Since there are potentially positive and negative responders in
population, this strategy will only work if the majority of units show
significant increase or decrease in firing rate and share a similar
latency statistic. Since the sum of Poisson variables is still Poisson,
we can then use a simplified univariate SSM

zk = azk−1 + εk (15)
C∑
c=1

yc,k ∼ Poisson
(

exp(czk + d)
)

(16)

When C is large, the Gaussian approximation will become more
accurate due to the law of large numbers.

Linear Gaussian SSM: We can approximate Poisson observa-
tions with half-rectified Gaussian observations, which yields the
linear dynamical systems (LDS). For inference, we use the standard

Kalman smoothing and EM algorithm [6]. This holds for both
univariate/multivariate state and observation equations.

D. Quantitative Assessment

In batch data analysis, assuming that the parameters in Θ are
stationary across trials, and the trial variability is induced by latent
process z1:T ; we can quantify the between-trials variability by
computing the averaged Kullback-Leibler (KL) divergence

DKL =
1

2
KL
(
z1:T,i‖z1:T,j

)
+

1

2
KL
(
z1:T,j‖z1:T,i

)
=

1

2T

T∑
k=1

KL
(
zk,i‖zk,j

)
+ KL

(
zk,j‖zk,i

)
=

1

4T

T∑
k=1

(
tr
(
P−1
k|T,jPk|T,i

)
+ tr

(
P−1
k|T,iPk|T,j

)
− 2m

+(zk|T,j − zk|T,i)
>P−1

k|T,j(zk|T,j − zk|T,i)

+(zk|T,i − zk|T,j)
>P−1

k|T,i(zk|T,i − zk|T,j)

+ log

(
det|Pk|T,j |
det|Pk|T,i|

)
+ log

(
det|Pk|T,i|
det|Pk|T,j |

))
(17)

where the subscripts i and j denote the trial indices.
For multiple trials, we compute the averaged “leave-one-out” log

marginal likelihood. Given unseen ensemble spike data of a new
trial, the log marginal likelihood of new data ỹ is given by

log p(ỹ1:T |Θ) = log

∫
p(ỹ1:T , z1:T |Θ)dz1:T (18)

=

T∑
k=1

log p(ỹk|ỹ1:k−1) =

T∑
k=1

log

∫
p(ỹt|zk)p(zk|ỹ1:k−1)dzk

In the case of linear Gaussian SSM, equation (18) is analytically
integrable. For the Poisson observation model, we can use Laplace
approximation (e.g., [14]) or Monte Carlo approximation for (18)

log p(ỹ1:T |Θ) ≈ 1

Np

Np∑
i=1

T∑
k=1

log p(ỹk|z(i)
k ) (19)

where z
(i)
k ∼ N (ẑk|k−1,Pk|k−1) are i.i.d. samples drawn from

p(zk|ỹ1:k−1) estimated from an online Kalman filter.

IV. EXPERIMENTAL DATA AND RESULTS

A. Neurophysiology

Tetrodes were constructed from four twisted 12.7 µm polyimide
coated microwires (Sandvik) and mounted in an 8 tetrode Ver-
saDrive (Neuralynx). A spacing distance of 0.508 mm separated
tetrodes aligned in a 1.35 mm diameter circle. Electrode tips were
plated with gold to reduce electrode impedances to 100-500 kΩ
at 1 kHz. As described previously, rats were anesthetized with
isoflurane (1.5-2%). The skull was exposed and a 2.5-mm diameter
hole was drilled above the target region. A durotomy was performed
before tetrodes were slowly lowered unilaterally into the ACC or
S1 with the stereotaxic apparatus. All procedures in this study were
performed in accordance with the NYU School of Medicine IACUC
and the NIH guideline.

Noxious stimulation via a 473 nm blue diode-pumped solid-state
laser (150-250 mW intensity) was applied to plantar surface of the
hind paw contralateral to the brain recording site in freely moving
rats. All recording sessions consisted on average 30 trials with
variable inter-trial intervals (45±15 s). Using video (30 frame/s)
tracking, the onset of noxious pain was identified, indicated by
the paw withdrawal. Trials were aligned to the initiation of paw
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Fig. 3. Single-trial analysis based on S1 population (left, 12 units) and
ACC population (right, 7 units). (A) Population spike count between [−5, 5]
s, with 0 indicating paw withdrawal. Bin size 50 ms. (B) Estimated Z-score
from the latent state variable (m = 1, equation 4). Horizontal dashed lines
mark the thresholds of significant zone. Vertical dashed line marks the laser
onset. Blue shaded area marks the confidence intervals, and red curve marks
the Z-score computed from multi-unit spike count directly. (C) Equivalent
P -value derived from the Z-score (equation 5).

withdrawal. Behavioral response latency was determined from the
time of laser onset to withdrawal.

Before recording, animals were given a 30-min period to habit-
uate to a plastic recording chamber (38 × 20 × 25 cm3). Tetrodes
were lowered in steps of 60 µm before each session recording.
Rats were connected to recording equipment (Open Ephys) via
an RHD2132 amplifier board and Serial Peripheral Interface cable
(Intan Technologies). Signals were monitored and recorded from 32
low-noise amplifier channels at 30 kHz, band-passed filtered (0.3
to 7.5 kHz). Spike sorting and data analysis were performed using
Offline Sorter (Plexon), NeuroExplorer (Nex Technologies), and
MATLAB (MathWorks). Clusters were identified as spikes using a
number of different features, including timestamp, nonlinear energy,
principal (1st to 3rd) components, and negative peak amplitude of
each channel. All sorted single units (putative pyramidal neurons
and interneurons) are included in population analysis.

B. Single Unit Analysis

In single cell analysis (for a multiple-trial setting), under 200
mW laser intensity we have found that the average percentages
of positive and negative responsive units are respectively 47.5%
and 2.5% among ACC populations (n = 39 cells), as well as
respectively 54.3% and 22.9% among S1 populations (n = 49
cells). These ratios also change with varying laser intensities.
Since S1 population encodes sensory component of pain, and ACC
population encodes aversive or affective component of pain, some
of responsive S1 neurons may encode pain non-specific responses
(e.g., thermoneutral vs. thermonoxious components).

C. Population Analysis

In population analysis, we apply our proposed methods to analyze
ACC and S1 ensemble spike data in both single and multiple-trial
settings. The detection of significant change in P -value is robust

for m = 1 or m = 2 (thus we use m = 1 for remaining analyses).
In single-trial analysis, the algorithm converges very fast in most of
cases. For instance, in our non-optimized MATLAB implementation
at an iMac computer (3.5 GHz Intel Core i7, 16 GB RAM), the
CPU time is <4 seconds for 12 units with 200 temporal bins. We
define the latency as the first time point that the Z-score reached the
statistical significance level relative to the onset of paw withdrawal
in response to pain. If the time occurs prior to onset of withdrawal,
the latency value is allowed to be negative. In comparison, we
also compute the Z-score obtained from the multi-unit spike count
activity (red curve, Fig. 3B), which is termed as the “empirical
method”. It is found that the Z-score computed from the latent
variable is much smoother than the one computed directly from the
empirical method. When all units show the same trend of change
(e.g., increase) in firing rate, both methods can detect pain responses
(Fig. 3, left panels); nevertheless, when only some but not all units
exhibit a significant firing rate change, the empirical method fails
to identify the pain episode, whereas our method can detect pain
successfully (Fig. 3, right panels).

In our preliminary investigation, we note that the results derived
from the linear Gaussian SSM are qualitatively similar and has
a comparable latency statistic (results not shown due to space
limitation). However, the computational speed is 4-5 fold faster
than the Poisson SSM. Therefore, from a practical point of view,
we may favor the speed with a little compromise of accuracy.

In multiple-trial analysis, we compute the between-trials variabil-
ity for both ACC and S1 populations. In the Fig. 2 example, we
obtained the pairwise DKL statistics is 0.22±0.19. We also compare
the latency statistics computed from ACC and S1 populations
under different laser intensity. Detailed experimental results will
be reported elsewhere.

V. DISCUSSION

A naive implementation of the full or simplified SSMs has a
linear computational complexity of O(`m3T ), where ` denotes the
number of EM iterations until convergence. Nevertheless, in online
detection applications, it is preferred to analyze ensemble spike data
on the fly. One possible solution is to use some initial recordings
as training set for model identification, and in the testing phase to
run a recursive Kalman filter (with O(m3 + m2C + mC2 + C3)
complexity) or a steady-state Kalman filter (with O(m2 + mC)
complexity). The computational reduction is significant when either
m or C is large. In a non-stationary scenario, the parameters can be
updated in an online or semi-batch manner. A sequential change-
point (pain) detection algorithm is under investigation.

In our statistical analysis, the latent variable zk is modeled as a
linear Gaussian Markovian process, the smoothing is determined
by the transition matrix A and noise covariance matrix Q. To
increase the flexibility of smoothing, we can introduce a Gaussian
process (with zero mean and a covariance function K(zk, zl),
parameterized by some hyperparameters) to the state equation [5],
[18]. In addition, the state space analysis is useful for dimensionality
reduction and visualization for neuronal ensembles.
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