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ABSTRACT

This paper presents a novel method for extracting auditory

steady state response (ASSR) signals from background elec-

troencephalogram. 40-Hz ASSR signals are sensitive to sub-

ject’s state of consciousness and can be used as a monitor for

the depth of anaesthesia. The suggested method is a multi-

level adaptive wavelet denoising scheme that extracts ASSR

cycles faster than the currently used averaging schemes and

can monitor depth of anesthesia with minimum delay. It es-

timates the variance of noise and adapts the threshold at each

denoising level. The algorithm benefits from the fact that

wavelet transform preserves temporality and takes into con-

sideration the correlation of the neighbor wavelet coefficients.

Our method extracts ASSR from small number of epochs in a

short time moreover, it does not neglect the variations of the

signal from one epoch to the other and outperforms averag-

ing. The performance of the proposed scheme is evaluated

on the synthetic and on real data recorded during induction of

anaesthesia ASSR signals in the paper.

Index Terms— 40-Hz ASSR, monitoring depth of anaethe-

sia, wavelet denoising

1. INTRODUCTION

Auditory steady state response (ASSR) is the electrical

changes in the ear and brain of a normally hearing person

in response to a periodic acoustic stimuli. The ASSR is

called 40-Hz ASSR if the stimuli has 40 Hz repetition rate.

ASSR signal shows how neural information propagates from

the acoustic nerves in the ear to the cortex [1]. ASSR signal

was originally used for audiometry tests. The signals are

extracted from electro encephalograph (EEG) [2].

The amplitude in 40-Hz response varies by the subject’s level

of arousal [3, 4, 5], and consciousness [6, 7]. 40-Hz response

can be used as a measure of depth of anesthesia [7, 8, 9, 10].

In almost all cases in the literature, ensemble averaging is

used for extracting 40-Hz ASSR signals from the background

noise [8, 11, 9]. Long durations of time and high number

of epochs are needed for extracting ASSR by averaging. In

our previous paper we used a window of 300 epochs for

extracting each ASSR cycle [10]. Plourde et al. used 1000

epochs [8], which took 132.8 seconds of recording to extract

an ASSR cycle. In his other paper, Plourde used 34.25 to

47.95 seconds of recording. Picton [9] used 100 seconds of

recording for extracting ASSR during sleep and Bohorquez

et al. averaged over 2219 sweeps [12]. Besides, the long

duration of time averaging is based on the assumption that

the buried-in noise ASSR signals do not vary between epochs

which may not always be the case. Specifically during induc-

tion and emerging from anaesthesia, important information

regarding the fast variations of ASSR may be lost due to this

assumption.

Wavelet transform is a time-frequency decomposition method

with optimal resolution on both domains. Wang et al.

suggested in [13] that wavelet analysis is more suitable

than FFT analysis for neurophysiological signals due to

the non-stationary nature of the signals. Although wavelet

transform had been used for extracting evoked potentials

[14, 15, 13, 16], it has never been used to extract 40-Hz

ASSR signals except by Ikawa et al. in 2012 [17]. Their

proposed wavelet denoising method consisted of decompos-

ing the signals with stationary wavelet transforming [18] and

inverse transform of just the forth scale (D4) in order to keep

the desired frequencies. Their method, however, is incapable

of removing the noise in the same frequency band. Later in

[19] they suggested that the frequency band was too wide to

extract the 40-Hz ASSR.

For denoising evoked potentials Quiroga et al. [14] and [16]

proposed a wavelet denoising scheme but their methods use

prior information about the previous cycles for denoising

the next ones. Wang et al. [13] used conventional wavelet

denoising method for recorded from rhesus monkey intracor-

tical evoked potential which has much higher signal to noise

ratio (SNR) than recorded from scalp evoked potentials.

In this paper we present a new multi-level denoising algo-

rithm for fast denoising of low SNR ASSR signals. The

method uses a window of 64 epochs for denoising ASSR cy-

cles in 6 levels of wavelet denoising. Thresholds which have

an important role in the performance of the algorithm are

calculated adaptively at each level of denoising and for each

wavelet scale. The time correlation between the neighbor

wavelet coefficients on the same scale, parent and children
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coefficients in different scales are taken into consideration

while thresholding. The method is built on the Cyclic Shift

tree denoising (CSTD) algorithm [15, 20] for denoising au-

ditory evoked potentials. The modified denoising algorithm

with adaptive thresholding, performs better than weighted

averaging in very low SNRs. The algorithm is applied to

synthetic signals, and signals recorded from human subjects

during surgery before and after induction of anaesthesia. The

denoised 40-ASSR can show the decrease in the signals am-

plitude during induction of anaesthesia.

2. METHOD

2.1. Data acquisition

The 40-Hz ASSR signals were recorded for the purpose of

monitoring depth of anaesthesia after getting ethics approval

from University of Toronto and “Research Ethics Board” of

Trillium Health Partners (where the surgical procedures were

conducted). Volunteer participants who were going under

general anaesthesia for primary reasons unrelated to and in-

dependent of this project were recruited. Participants had no

history of hearing loss or neurological problems, were more

than 18 years old and had American Society of Anaesthesiol-

ogy score (ASA) below or equal to III .

Signals were recorded before and after anaesthesia induction,

and after emerging from anesthesia. In all surgeries general

anesthesia was induced by Fentanyl and Propofol, the depth

of anesthesia was then maintained by the volatile anesthetic,

Sevoflurane. Muscle relaxant Rocuronium was also injected

in some cases. The auditory stimuli were generated with

Vivosonic IntegrityTM V500 as an AM-ASSR stimulus with

the modulation frequency of 40.68 Hz as carrier and center

frequency near 2 KHz. The stimuli was presented binaurally

to the ears of the subjects by ER-3A-ABR insert earphone

(Etymotic Research) at the level of 60 dB HL, loud enough to

generate an ASSR but not too loud to cause discomfort to the

study participants. The signals were recorded in presence of

normal auditory noise and no earmuff was used for recoding.

EEG signals were recorded in 8 channels from 11 electrode

sites placed on international 10-20 electrode sites. EEG was

recoded by NicoletTM Wireless 32 amplifier with 12 KHz

sampling frequency. The stimuli was also recoded on one of

the EEG channels for synchronization purposes.

2.2. Data pre-processing

After recording the EEG signal and the stimuli with NicoletTM

Wireless 32 amplifier, the signals were downsampled from

fs = 12 KH to fs = 2.4 KHs and the outlier samples (with

more that 3×standard deviation away from the mean value)

were removed. The signals were then filtered with third order

butterworth low pas and high pass filters to remove the fre-

quencies out of 35 Hz ≤ f ≤ 45 Hz and 75 Hz ≤ f ≤ 85 Hz.

Afterwards the EEG signal channels were synchronized with

the stimuli cycles in the second round of outlier removal

epochs with variance more that 3×standard deviation away

from mean variance were discarded.

After synchronization each epoch of the EEG signal can be

modeled as

xi[n] = si[n] + ri[n] (1)

where xi[n] is the ASSR in response to the ith sweep of the

stimuli and ri[n] is the EEG and noise from other sources.

Under the assumption that si[n] is phase locked to the stimuli,

noise ri[n] is zero mean, E(ri[n]) = 0, has constant variance,

var(ri) = σ2 and is uncorrelated from one sweep to another,

E(ri[n]rj [n−k]) = ρr[k]δ(i−j) ensemble average x̂[n] will

be

x̂[n] =
1

N

N−1∑

i=0

xi[n] = s[n] +
1

N

N−1∑

i=0

ri[n] (2)

which is an unbiased estimator: E(x̂[n]) = E(si[n]) = s[n],

and decrease the variance of the noise to var(ri) = σ2

N . In

this paper we compared the performance of weighted ensem-

ble average, equation 3, for extracting ASSR cycles with our

proposed denoising algorithm.

x̂[n] =
1

N

N−1∑

i=0

ωixi[n], where

N−1∑

i=0

ωi = 1 (3)

Here the weights are inversely proportional to the variance of

each epoch.

ωi =
α

E(xi − E(xi))2
(4)

2.3. The estimator

The ASSR signals are buried in the background EEG and

noise and have a very low SNR. The ASSR signals which are

recorded for the purpose of monitoring depth of anaesthesia

are noisier than the ones recoded for audiometry.This is be-

cause the these ASSR signals are recorded in the very noisy

environment of the operation rooms with noise from other in-

struments and equipments and the patients body movements.

Conventional wavelet denoising method is a fast estimator

of signals that are corrupted by low level noise. It operates

on a single frame of signal by performing a single wavelet

transform, setting the coefficients below a defined threshold

to zero, and performing inverse wavelet transform. This ap-

proach is not suitable for signals with very low SNR since

most of the signal energy will be lost by setting the wavelet

coefficients to zero.

For extracting ASSR signals we modified the Causevic et al.

method of CSTD that uses an array with N frames for ex-

tracting one cycle of the clean signal [15, 20]. In the CSTD
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method, information from N individual frames (which con-

sists of an epoch) is used to produce an estimator that de-

noise the signal in K = log 2(N) levels. CSTD perfor-

mance exceeds that of linear averaging process and conven-

tional wavelet denoising. The algorithm recombines the origi-

nal low SNR frames in a tree like fashion and creates M > N
frames. Defining the thresholds plays a very important role in

the CSTD. While a very high threshold sets too many coef-

ficients to zero, a very low threshold does not omit the noise

coefficients. The un-denoised frames will be averaged at each

level of denoising; hence, the method will change into an en-

semble averaging estimator. In this paper we used two dif-

ferent adaptive schemes for calculating threshold adaptively

as function of estimated noise variance, wavelet scale and de-

noising level. The decision is made taking into consideration

the correlation between the coefficients of the same and dif-

ferent wavelet scales [16].

At the first denoising level each two adjacent frames in the

original array are averaged to form N/2 frames, another N/2
frames are generated by cyclicly shifting the array of frames

by one frame, and averaging over each two adjacent frames.

Wavelet coefficients are calculated for each frame and denois-

ing threshold is defined as a function of estimated noise vari-

ance, wavelet scale and denoising level as

δj,l = (
√
2)l × σ̂2

l (2 ln(n)) (5)

where n is the number of coefficient at the scale j, and sigma

is the estimated noise level at level l calculated as

σ̂l = MAD/0.6745 (6)

MAD = Median{|XJ,1 −XJ |, . . . , |XJ,n −XJ |} (7)

On the decision making stage Cai and Silverman [21] and

Shapiro [22] denoising schemes are used as presented in Ah-

madi’s paper [16]. In scheme 1, information from the neigh-

bor coefficients are incorporated to form a new thresholding

criterion. Wavelet transform preserves temporality and the

neighbor coefficients are close in time and should be highly

correlated; hence, a sudden increase can be an indication of

noise. In this scheme some of squares of each coefficient,

Xj,k, and its immediate neighbors, Xj,k−1,Xj,k+1, in the

same scale are compared with the threshold for denoising.

Xj,k =

{
Xj,k if X2

j,k−1
+X2

j,k +X2
j,k+1

> δj,l

0 if X2
j,k−1

+X2
j,k +X2

j,k+1
≤ δj,l

In scheme 2 we added an additional step to scheme 1 based on

Shapiro’s method [22]. In this scheme if a coefficient is de-

tected as noise and omitted at a wavelet scale most probably

its children coefficients at the finer wavelet scales are noise

coefficients and should be omitted as well. Therefore if a co-

efficient is set to zero the two parent coefficients at the lower

wavelet scale will be set to zero too.

On the next level of denoising the new frames are generated

Original

SNR

Ens. Averagin Scheme1 Scheme2

64 fr 128fr 6lv 7lv 6lv 7lv

-12dB 6.09 9.02 11.47 13.54 11.82 12.83

-11dB 7.11 10.11 12.19 14.54 12.31 13.59

-10dB 8.19 11.13 13.22 15.17 13.11 13.92

-9dB 9.21 12.18 13.97 15.81 13.53 14.27

-8dB 10.13 13.14 14.65 16.54 14.18 15.01

-7dB 11.22 14.18 15.41 17.14 14.67 15.35

-6dB 12.16 15.14 16.02 17.73 15.00 15.92

Table 1: signals SNR before, and after denoising with

weighted ensemble average, and adaptive multi-level wavelet

denoising schemes(scheme1 and 2).

by averaging over the previous level frames and, averaged in

the same manner to generale new array of frames. Denois-

ing is performed with the new thresholds. As we go from one

level to the next level of denoising, each frame is generated by

averaging over more frame from the original N frame array

and expected to have a higher SNR [15, 20]. Thus, at each

level of denoising the threshold is scaled down by
√
2
l/2.5

.

After the Nth level of denoising the coefficients will be av-

eraged and inverse wavelet transform is applied to obtain the

denoised ASSR cycle.

3. RESULTS

The performance of the proposed method is presented in this

section. First the estimator is applied on a simulated signal

with different noise levels. To simulate the signal a clean

40-Hz ASSR signal is extracted by ensemble averaging over

1000 epochs then white Gaussian noise is added to the signal

to generate the signal with the desired SNR. The simulated

signals are denoised with both schemes in 6 and 7 levels of

denoising. Hence an array of 64 and 128 frames are used

for estimating ASSR. Daubechies’s spline biorthogonal filter

is used for the wavelet transform. Each denoising window

consists of two cycles with 118 samples which is zero padded

with 10 zeros at the boundaries and transformed by wavelet

into 7 scales. Table 1 presents the signal SNR before and

after denoising with both schemes. The SNRs presented on

the table are the mean SNRs calculated over 100 trials of

denoising ASSR cycles with random noise.

Adaptive CSTD with similar parameters and 6 level of denois-

ing is used to estimated ASSR signals from recorded EEG sig-

nals. The 4 ASSR cycles extracted from recordedCz−A1A2

and C4−A1A2 channels of two subjects are shown in figure

1 and 2. ASSR cycles denoised with scheme 1 and 2 adap-

tive CSTD and weighted averaging are plotted on the same

figures for comparison. ASSR cycles are extracted with both

schemes with 6 levels of denoising, hence 64 epochs are used

for extracting each cycle. The performance of the schemes

are almost identical in this case and outstandingly smoother
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than the same cycle denoised by weighted averaging. The
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Fig. 1: ASSR cycles in subject 110 denoised with adap-

tive multi-level wavelet denoising schemes(sch1 and 2) and

weighted ensemble averaging.
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Fig. 2: ASSR cycles in subject 104 denoised with adap-

tive multi-level wavelet denoising schemes(sch1, and 2) and

weighted ensemble averaging.

decrease in the amplitude of ASSR can be observed in the de-

noised ASSR cycles before and after injection of anaesthetics.

Figure 3 shows the variation of peak to peak amplitude in 40-

Hz ASSR cycles before, and after injection of the anesthetics

in the same two channels for the two subjects shown in figures

1 and 2. The difference in the reaction time to injection of the

anaesthetics can be explained in differences in the weight and

height of the subjects and dose of anaesthetics (Table 2). The

sudden increase and decrease after induction in subject 110

coincides with a neuroexcitatory phenomena which was the

jerking movement of the hand. Figure 3.c shows the trend in

peak to peak amplitude for multi-level extracted ASSRs and

Averaged ASSRs in subject 104. The trend is estimated for

windows of 100 seconds by fitting a polynomial of order 5. It

can be seen that the trend of the peak to peak amplitude for

subject Height Weight Fent. Dose Prop. Does

104 153 Cm 67 Kg 200 µ g 110mg

110 179 Cm 123 Kg 150 µ g 250mg

Table 2: Subjects weight, height,and dose of anaesthetic

agents.

the ASSRs that are extracted with the proposed method shows

the reduction after anesthetic injection more clearly.
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Fig. 3: Amplitude variations before, and after the induction

of anaesthesia. (a) subject 110 , (b) subject 104 (c)estimated

trend in subject 104.

4. CONCLUSION

Adaptive multilevel wavelet denoising method is presented in

this paper for denoising very low SNR synthetic and recorded

40-Hz ASSR signals. It is shown that the method outperforms

the currently used ensemble averaging and extract ASSR cy-

cles with higher SNR. The method applied on the recoded

signals over the coarse of a surgical operation and shown that

the fast extracted ASSR cycles can well capture the induction

of anesthesia.

827



5. REFERENCES

[1] P. L. L. Sornmo, Bioelectrical signal processing in car-

diac and neurological applications. Elsevier Academic

Press, 2005.

[2] T. Picton, Human Auditory Evoked Potentials. Plural

Publishing INC., 2010.

[3] J. Jarger, R. Chmiel, J. Frost, and N.Coker, “Effect

of sleep on auditory steady state evoked potential,”

Electroenceph. Thechniques in Audiology and Otology,

vol. 7, pp. 240–245, 1986.

[4] S. Brad, “The auditory steady-state response: A

premier,” The hearing journal, vol. 55, no. 9, pp.

10,14,17,18, 2002.

[5] S. Haghigih and D. Hatzinakos, “Monitoring sleep

with 40-hz assr,” in Signal Processing Conference (EU-

SIPCO), 2014 Proceedings of the 22nd European, Sept

2014, pp. 661–665.

[6] C. Medler and E. Poppel, “Auditory evoked potentials

indicate the loss of neural oscillations during general

anesthesia,” Natruwissenschaften, vol. 74, pp. 42–43,

1987.

[7] T. P. G. Plourde, “Human steady state responses dur-

ing general anaesthesia,” Anaesthesia Analg, vol. 71, pp.

460–468, 1990.

[8] G. Plourde and C. Villemure, “Comparison of the effects

of enfourane/N2O on the 40-hz auditory steady-state

response versus the auditory middle latency response,”

Anesth Analg, vol. 82, pp. 75–83, 1996.

[9] T. Picton, M. S. John, and D. Purcell, “Human auditory

steady-state responses the effect of recording technique

and state of arousal,” Anasth Analg, vol. 97, no. 97, pp.

1396–1402, 2003.

[10] S. Haghighi, D. Hatzinakos, and H. El Beheiry, “The

effect of propofol induced anesthesia on human 40-hz

auditory steady state response,” in Electrical and Com-

puter Engineering (CCECE), 2015 IEEE 28th Canadian

Conference on, May 2015, pp. 812–817.

[11] J. Boherquez and O. Ozdamar, “Generation of the 40-hz

auditory steady-state response (ASSR) explained using

convolution,” Clinical Neurophisiology, vol. 119, pp.

2598–2607, 2008.

[12] O. O. J Bohorquez, “Generation of the 40-hz auditory

steady-state response (assr) explained using convolu-

tion,” Clinical Neurophysiology, vol. 119, no. 11.

[13] Z. Wang, A.Maier, D. Leopold, and H. L. NK. Logo-

thetis, “Single-trial evoked potential estimation using

wavelets,” Computers in Biology and Medicine, vol. 37,

no. 4, pp. 463 – 473, 2007.

[14] R. Quiroga and H. Garcia, “Single-trial event-related

potentials with wavelet denoising,” Clinical Neurophys-

iology, vol. 114, no. 2, pp. 376 – 390, 2003.

[15] E. Causevic, R. Morley, M. Wickerhauser, and

A. Jacquin, “Fast wavelet estimation of weak biosig-

nals,” Biomedical Engineering, IEEE Transactions on,

vol. 52, no. 6, pp. 1021–1032, June 2005.

[16] M. Ahmadi and R. Q. Quiroga, “Automatic denoising of

single-trial evoked potentials,” NeuroImage, vol. 66, pp.

672 – 680, 2013.

[17] N. Ikawa, A. Morimoto, and R. Ashino, “Waveform

analysis of 40-hz auditory steady-state response us-

ing wavelet analysis,” in Wavelet Analysis and Pattern

Recognition (ICWAPR), 2012 International Conference

on, July 2012, pp. 397–402.

[18] R. Coifman and D. Donho, “Translation-invariant de-

noising,” Lecture Notes in Statistics, vol. 103, pp. 125–

150, 1995.

[19] N. Ikawa, A. Morimoto, and R. Ashino, “An appli-

cation of wavelet analysis to procedure of averaging

waveform of 40-hz auditory steady-state response,” in

Wavelet Analysis and Pattern Recognition (ICWAPR),

2013 International Conference on, July 2013, pp. 79–

84.

[20] E. Causevic and E. Causevic, “Fast estimation of weak

bio-signals using novel algorithms for generating mul-

tiple additional data frames,” Patent US20 060 120 538

A1, Jun 8, 2006.

[21] T. Cai and B. Silverman, “Incorporating information

on neighbouring coefficients into wavelet estimation,”

Sankhya: The Indian Journal of Statistics, vol. 63, no. 2,

pp. 127–148, August 2001.

[22] J. Sahpiro, “Embedded image coding using zeerotrees

of wavelet coefficients,” Signal Process, IEEE Transac-

tions on, vol. 41, pp. 3445–3462, 1993.

828


