
REMOVAL OF EEG ARTIFACTS FOR BCI APPLICATIONS USING FULLY BAYESIAN
TENSOR COMPLETION

Yu Zhang1∗, Qibin Zhao2, Guoxu Zhou2, Jing Jin1, Xingyu Wang1, Andrzej Cichocki2,3

1 Key Laboratory for Advanced Control and Optimization for Chemical Processes,
East China University of Science and Technology, China

2 Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Japan
3 Skolkowo Institute of Science and Technology, Moscow, Russia

∗ Email: yuzhang@ecust.edu.cn

ABSTRACT

High accuracy of electroencephalogram (EEG) classification
can hardly be achieved if the signals are contaminated by se-
vere artefacts. One helpless way to avoid such artefacts is
usually to directly discard the severely disturbed EEG seg-
ments. This study considers a more elegant way that tries to
recover the disturbed segments from other undisturbed seg-
ments. The possible artefacts in EEG are treated as missing
values. A Bayesian tensor factorization (BTF) based method
is proposed to implement EEG completion for artefact re-
moval. By specifying a sparsity-inducing hierarchical prior,
the underlying low-rank tensor is discovered from incomplete
EEG tensor with automatically inferred model parameters.
The EEG missing values are effectively predicted with ro-
bustness to overfitting. Effectiveness of the BTF algorithm
is demonstrated on EEG data recorded from seven subjects in
a brain-computer interface paradigm based on event-related
potentials.

Index Terms— Electroencephalogram, Brain-computer
interface, Bayesian inference, Tensor completion

1. INTRODUCTION

Electroencephalogram (EEG) technique provides a good way
to investigate the potential neural response in our brain to a
specific mental task [1]. Since EEG recording requires rel-
atively simple and inexpensive equipment, it has been most
widely adopted for the development of brain-computer in-
terface (BCI) system. BCI is developed to build a direct
connection between a human brain and an external device
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through decoding (classifying) EEG, especially for recover-
ing the communication capability of disabled people.

Task-related EEG responses, such as event-related poten-
tials (ERPs), are usually very weak and likely to be contam-
inated by various artefacts (noises or outliers) that may be
caused by limb movement, eye blink, environment interfer-
ence or device instability, and so on [2, 3]. In the past few
years, numerous methods have been proposed to extract sig-
nificant features from noised EEG for mental task classifica-
tion [4, 5, 6]. However, good classification performance could
still hardly be achieved if the artefacts in EEG are extreme
large [7]. One helpless way to avoid such artefacts is usu-
ally to directly discard the severely disturbed EEG segments.
Subsequently, the curse-of-dimensionality will most probably
occur, especially in the context of BCI since the number of
training samples is usually limited when taking into account
the system practicability [8].

Tensor, as a multiway extension of matrix, is a natural
representation of multidimensional structure of EEG data [9,
10, 11, 12, 13]. Tensor factorization of incomplete data pro-
vides a powerful approach to estimate the latent factors from
partially observed entries by typically exploiting a CANDE-
COMP/PARAFAC (CP) multilinear model with a predefined
rank [14]. Recently, tensor completion has attracted increas-
ing research interest and been successfully applied to visual
data analysis [15, 16]. In EEG recording, it is actually quite
impossible that all of the segments are contaminated by severe
artefacts. Therefore, to remove interference, we consider that
a more elegant way is to recover the disturbed segments from
other undisturbed segments.

To this end, we propose to treat the possible outliers as
missing values and implement completion by CP tensor fac-
torization on multiway EEG data. The specified CP rank de-
termines the effective dimensionality of the latent space and is
considerably important for CP factorization. However, the se-
lection of rank is usually quite challenging and computational
expensive. Bayesian inference provides an effective approach
to automatically estimate the model parameters [17, 18, 19].
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In this study, we introduce a Bayesian tensor factorization
(BTF) based method to implement EEG completion for arte-
fact removal. By specifying a sparsity-inducing hierarchical
prior, the underlying low-rank tensor is discovered from in-
complete EEG tensor with automatically inferred model pa-
rameters including the CP rank. The missing values are effec-
tively predicted with robustness to overfitting for improving
the classification accuracy of EEG. The effectiveness of the
BTF method is validated on EEG data recorded from seven
subjects in an ERP-based BCI paradigm.

2. BAYESIAN TENSOR FACTORIZATION
FOR EEG COMPLETION

2.1. Basic notations and operations

A tensor is a multiway array of data, where the order of tensor
is the number of dimensions. We denote by a, A, AAA vector,
matrix and tensor, respectively. An N th-order tensor is de-
noted asAAA = (A)i1,...,iN ∈ RI1×...×IN . The inner product of
a set of vectors is defined as a sum of element-wise products

〈a(1),a(2), . . . ,a(N)〉 =
∑
i

∏
n

a
(n)
i . (1)

The outer product of a set of vectors results in a rank-1 tensor

XXX = a(1) ◦ a(2) ◦ · · · ◦ a(N), (2)

where xi1...iN = a
(1)
i1
a

(2)
i2
· · · a(N)

iN
.

2.2. EEG completion based on BTF

Consider a 3th-order EEG tensor YYY ∈ RI1×I2×I3 (channel ×
point × trial). Assume the temporal points in some channels
from some trials are disturbed by severe artefacts. Treating
these artefact points as missing values, YYY becomes an incom-
plete tensor. We denote by Ω a set of 3-tuple indices so that
Yi1,i2,i3 is observed if (i1, i2, i3) ∈ Ω, and define a binary
tensor OOO of the same size as YYY as an indicator of observed
entries. Consider the following CP model

YYY =

R∑
r=1

a(1)
r ◦ a(2)

r ◦ a(3)
r + εεε, (3)

where R denotes the CP rank and εεε ∼
∏

i1,i2,i3
N (0, τ−1) is

the noise term. The mode-n factor matrix A(n) ∈ RIn×R is
obtained as

A(n) = [a
(n)
1 , . . . ,a

(n)
in
, . . . ,a

(n)
In

]T , n = 1, 2, 3. (4)

The likelihood is then written as

p(YYYΩ|{A(n)}3n=1, τ) =

I1∏
i1=1

I2∏
i2=1

I3∏
i3=1

N
(
Yi1i2i3

∣∣〈a(1)
i1
,a

(2)
i2
,a

(3)
i3
〉, τ−1

)Oi1i2i3

, (5)

Incomplete EEG tensor Low‐rank EEG tensor

BTF

Fig. 1. An example of EEG completion via BTF.

where τ denotes the noise precision, Yi1i2i3 is generated from
multiple R-dimensional latent vectors a

(1)
i1

, a
(2)
i2

, and a
(3)
i3

.
This likelihood allows us to model the multilinear interaction
structure.

The CP rank R indicates the extent of low rank approx-
imation and is a crucial parameter for controlling the effec-
tive dimensionality of the latent space. However, the accurate
determination of R is usually quite challenging and compu-
tationally expensive. Bayesian inference provides an elegant
way to automatically determine the model complexity. Ac-
cordingly, we specify a sparsity-inducing prior over hyperpa-
rameters that control the variance related to each dimension-
ality of the latent space, respectively. As a result, a Bayesian
tensor factorization (BTF) based method is proposed to auto-
matically infer the optimal rank R and effectively avoid over-
fitting for EEG tensor completion.

A prior governed by hyperparamters λλλ = [λ1, . . . , λR] is
defined over the latent factors

p(A(n)|λλλ) =

In∏
in=1

N (a
(n)
in
|0,Λ−1), n = 1, 2, 3, (6)

where ΛΛΛ = diag(λλλ) is the precision matrix shared by latent
factor matrices in all modes, and each λr controls rth compo-
nent in A(n). The prior (6) is closely related to sparse Bay-
seian learning and will enforce column sparsity of the factor
matrices. We further define a hyperprior over λλλ

p(λλλ) =

R∏
r=1

Γ(λr|cr0, dr0), (7)

where Γ(x|a, b) = baxa−1e−bx

Γ(a) denotes a Gamma distribution.
The same sparsity can be obtained at the different three modes
to infer the rank of tensor during factorization since the priors
are shared across different latent matrices.

For Bayesian inference, a hyperprior over the noise preci-
sion τ is also needed

p(τ) = Γ(τ |a0, b0). (8)

We collect all unknown latent variables and hyperparameters
into Ψ = {A(1),A(2),A(3),λλλ, τ}. Through combining the

820



1 2 3 4 5
20

30

40

50

60

70

80

90

100
10% missing

No. trials average

A
cc

ur
ac

y 
(%

)

1 2 3 4 5
20

30

40

50

60

70

80

90

100
20% missing

No. trials average
1 2 3 4 5

20

30

40

50

60

70

80

90

100
30% missing

No. trials average
1 2 3 4 5

20

30

40

50

60

70

80

90

100
40% missing

No. trials average

 

 

Without BTF

With BTF

Fig. 2. Averaged ERP classification accuracy obtained by STDA only and by BTF for EEG completion followed by STDA at
different missing ratios, in using one to five trials average, respectively.

likelihood (5), priors (6) and hyperpriors (7) and (8), the joint
distribution can be written as

p(YYYΩ,Ψ) = p
(
YYYΩ

∣∣{A(n)}3n=1, τ
) 3∏

n=1

p
(
A(n)|λλλ

)
p(λλλ)p(τ).

(9)
When given the observed EEG data, the full posterior distri-
bution of all variables in Ψ is given as

p(Ψ
∣∣YYYΩ) =

p(Ψ,YYYΩ)∫
p(Ψ,YYYΩ)dΨ

. (10)

The posterior distribution of Ψ can be estimated by a de-
terministic approximate inference under variational Bayesian
framework [16, 20]. The predictive distribution over missing
entries YYY\Ω is then inferred as

p(YYY\Ω
∣∣YYYΩ) =

∫
p(YYY\Ω

∣∣Ψ)p(Ψ
∣∣YYYΩ)dΨ. (11)

An example of EEG completion via the BTF-based algorithm
is depicted in Figure 1.

2.3. Experimental Evaluation

EEG data were recorded from seven subjects using the
g.USBamp amplifier, at 256 Hz sampling rate, with band-
pass filtering between 0.1 and 30 Hz. In the experiment,
eight arrow commands were placed on a screen to simulate
a navigation control. Specified objects were presented in a
block-randomized sequence on the arrows as visual stimuli
to elicit ERPs. Each subject completed 16 experimental runs.
In each run, the presentation block was repeated five times, in
each of which an object was presented on one arrow position
once with a duration of 100 ms and ISI of 80 ms. The subjects
were indicated to focus attention on the cued arrow positions
and silently count the number of times the objects appeared.
From each object presentation, a data segment of 700 ms was
extracted and downsampled by a 12-point moving average.
That is, an EEG data matrix of size 16×15 (channel× point)

was derived from each trial. A total of 640 trials consisting
of 80 targets and 560 non-targets were derived from each
subject, where each 40 trials (5 targets and 35 non-targets)
corresponded to one command selection.

The effectiveness of BTF-based method on EEG com-
pletion was investigated at different missing ratios (10%,
20%, 30% and 40%). Spatial-temporal discriminant analysis
(STDA) [4] was adopted for comparison, which performed
collaboratively multiway filtering to extract discriminative
features from noised EEG for ERP classification, and has
shown better performance over many other competing algo-
rithms. The classification accuracy was compared between
in using STDA only and in using BTF for EEG completion
followed by STDA. For each subject, randomly chosen half
data (i.e., 320 trials) were used for feature extraction and
classifier calibration, while the remaining half for test. The
classification accuracy was evaluated on repeated running of
the program for 50 times, in using one to five trials average,
respectively.

3. RESULTS

Figure 2 shows the ERP classification accuracy averaged over
subjects, derived by STDA only and by BTF for EEG com-
pletion followed by STDA at different missing ratios, in us-
ing one to five trials average, respectively. It can be seen
that accuracy was obviously enhanced by using BTF for EEG
completion before feature extraction and classification. Ta-
ble 1 further presents the statistical results of accuracy differ-
ence by using paired t-test between STDA only and BTF fol-
lowed by STDA. The proposed BTF algorithm significantly
improved the classification accuracy in using different num-
bers of trials average at all 10% to 40% missing ratios.

Note that the effects of BTF might become relatively lim-
ited when either very few (e.g., 1% to 2%) or too many (e.g.,
90% to 95%) data are missing. Hence, we recommend that
the proposed BTF-based algorithm is a good choice for EEG
completion to improve classification accuracy when the miss-
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Table 1. Statistical analysis for accuracy difference between
STDA only and BTF followed by STDA, obtained by the
paired t-test at different missing ratios.

Missing ratio
No. trials average

1 2 3 4 5
10% p < .05 p < .05 p < .005 p < .01 p < .01

20% p < .01 p < .001 p < .005 p < .01 p < .05

30% p < .001 p < .001 p < .001 p < .005 p < .05

40% p < .05 p < .005 p < .005 p < .001 p < .005

ing ratio is neither extremely low nor extremely high.

4. CONCLUSIONS

In this study, we proposed a Bayesian tensor factorization
(BTF) based method to implement EEG completion for arte-
fact removal. The possible outliers was treated as missing
values. With a sparsity-inducing hierarchical prior, the un-
derlying low-rank tensor is discovered from incomplete EEG
tensor with automatically inferred model parameters. Exper-
imental studies were carried out on EEG data recorded from
seven subjects in an ERP-based BCI paradigm. The results
demonstrated that ERP classification accuracy was significant
improved by using BTF for EEG completion before classifi-
cation in comparison with directly performing classification
without BTF.
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