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ABSTRACT

Wireless body area network (WBAN) is emerging in the mo-
bile healthcare area to replace the traditional wire-connected
monitoring devices. As wireless data transmission dominates
power cost of sensor nodes, it is beneficial to reduce the data
size without much information loss. Compressive sensing
(CS) is a perfect candidate to achieve this goal compared to
existing compression techniques. In this paper, we proposed
a general framework that utilize CS and online dictionary
learning (ODL) together. The learned dictionary carries in-
dividual characteristics of the original signal, under which
the signal has an even sparser representation compared to
pre-determined dictionaries. As a consequence, the com-
pression ratio is effectively improved by 2-4x comparing
to prior works. Besides, the proposed framework offloads
pre-processing from sensor nodes to the server node prior
to dictionary learning, providing further reduction in hard-
ware costs. As it is data driven, the proposed framework has
the potential to be used with a wide range of physiological
signals.

Index Terms— Compressive sensing, online dictionary
learning, wireless sensor nodes (WSNs), wireless health.

1. INTRODUCTION

The existing heathcare model of the medical system is based
on episodic examination or short-term monitoring for dis-
ease diagnosis and treatment. The major issues in such a
system are the overlook of individual variability and the lack
of personal baseline data, due to limited frequency of mea-
surements. Continuous or non-intermittent monitoring is the
key to create big data of individual health record for studying
the variability and obtaining the personal baseline. Recent
advancements in wireless body area networks (WBAN) and
bio-sensing techniques has enabled the emergence of minia-
turized, non-invasive, cost-effective wireless sensor nodes
(WSNs) that can be deployed on the human body for per-
sonal health and clinical monitoring [1]. Through WBAN,
the monitored data can be transmitted to a near-field mobile
aggregator for on-site processing. Through Internet infras-
tructures, the data can be uploaded to remote servers for

storage and data analysis. These technology advancements
will eventually transform the existing model of health related
services to continuous monitoring for disease prediction and
prevention [2]. Such a wireless health revolution will make
healthcare systems more effective and economic, benefiting
billions of individuals and the society they live in.

One of the key challenges faced by the long-term wire-
less health monitoring is the energy efficiency of sensing and
information transfer. Due to the limited battery capacity of
WSNs, continuous sensing inevitably increases the frequency
of battery recharging or replacement, making it less conve-
nient for practical usage. In the WSNs for bio-sensing appli-
cations, the energy cost of wireless transmission is about 2 or-
ders of magnitude greater than other operations (e.g., analog-
to-digital conversion (ADC)). State-of-the-art radio transmit-
ters exhibit energy efficiency in the nJ/bit range while every
other component consumes at most tens of pJ/bit [3]. There-
fore, reducing the data size for information transfer is the key
to improve energy efficiency.

The CS framework [1, 4] offers a universal and simple
data encoding scheme that can compress a variety of phys-
iological signals, providing a viable solution to realizing
energy-efficient WSNs for long-term wireless health moni-
toring. However, the compression ratio (CR) demonstrated
by existing frameworks is limited given a signal recovery
quality required for diagonosis purposes. In [5, 6] percent
root-mean-square difference (PRD) of 8.5% and 9% is re-
ported at a CR of 5x and 2.5x for ECG signals, respectively.
These frameworks all deal with the sparsity of physiological
signals on pre-determined bases and fail to take into account
the individual variability in signals that is critical to exact
signal recovery.

In this paper, we propose an energy-efficient data acqui-
sition framework, customized for the long-term electrocar-
diogram (ECG) monitoring, which exploits online dictionary
learning (ODL) on server nodes to train personalized bases
that capture the individual variability for further improving
the sparsity of ECG signals. By incorporating such prior
knowledge into signal recovery, the CS performance in terms
of accuracy-CR trade-off is significantly enhanced, leading to
further data size reduction and energy saving on sensor nodes.
Additionally, the proposed framework does not require any
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pre-processing stages on sensor nodes. Alternatively, high
reconstruction quality is enforced by pre-processing training
data prior to the dictionary learning stage, to eliminate the im-
pact of noise and interference on trained bases, enabling sim-
pler and more cost-effective sensor structures. Experimental
results based on MIT-BIH database show that our framework
is able to achieve an average PRD of 9% at a CR of 10x.
This indicates that our framework can achieve 2-4x additional
energy saving on sensor nodes (for the same reconstruction
quality) compared to the reference designs [1, 5, 6, 7]. Due
to the training and personalization of the dictionary, the pro-
posed framework has the potential to be generally applied to
a wide range of physiological signals.

2. BACKGROUND

2.1. Compressive Sensing

Assuming a signal f ∈ Rn can be well represented by a sparse
vector x ∈ Rk on a certain basis Ψ ∈ Rn×k as f = Ψx, then
the signal information can be well preserved by projecting f
onto a random domain through a sensing matrix Φ ∈ Rm×n
(m<n) [8], given as

y = Φf = ΦΨx. (1)

Candes and et al. [9] has proven that one has a high prob-
ability to recover the sparse coefficient x by solving the basis
pursuit (BP) problem defined as

min
x∈Rk

‖x‖1 s.t. ‖y −ΦΨx‖2 ≤ ε, (2)

where ε is an error tolerance term for enhancing the accuracy
of the solution considering noise.

2.2. Dictionary Learning

Learning dictionaries from data instead of using off-the-shelf
bases has been proved effective in improving signal recon-
struction performance for images [10]. The most recent dic-
tionary learning algorithms [11, 12, 13] are second-order it-
erative batch procedures that access the whole training set
at each iteration in order to minimize a cost function under
certain constraints. Although these algorithms [11, 12, 13]
have been shown experimentally faster than first-order gra-
dient descent methods, they cannot effectively handle very
large training sets [14], because of the involved matrix factor-
ization upon the entire training data. To be able to deal with
large data sets for long-term monitoring, the ODL algorithm
is adopted in our framework. Compared to the methods men-
tioned above, ODL has a higher training speed and requires
less storage space [15] because of its elimination of large ma-
trix factorizations. With ODL, it is possible to add new fea-
tures into the dictionary without stalling the reconstruction,
which offers a mechanic of amelioration when a distinctive
input is received.

2.3. ODL

Assuming the training set is composed of i.i.d. samples fol-
lowing a distribution p(x), ODL draws one sample xt at a
time and alternates between the sparse coding stage and dic-
tionary update stage.

2.3.1. Sparse Coding

The sparse coding problem is a l1-regularized least-squares
problem defined as

αt = arg min
α∈Rn

1

2
‖xt −Dt−1α‖22 + λ‖α‖1. (3)

Due to the high correlations between columns of the
dictionary, a Cholesky-based implementation of the LARS-
Lasso algorithm, which provides the whole regularization
path, is chosen here to solve the sparse coding problem [16].

2.3.2. Dictionary Updating

At this stage, the objective is to find a dictionary D that satis-
fies:

Dt = arg min
D

1

t

t∑
i=1

1

2
‖xi −Dαi‖22 + λ‖αi‖1. (4)

The problem in (4) can be solved by the block coordinate
descent algorithm [16]. Overall, the detailed procedure for
ODL algorithm is summarized in Algorithm 1.

Algorithm 1 Pseudocode for ODL

Input: Input data x ∈ Rn ∼ p(x), initial dictionary D0 ∈
Rn×k, number of iterations t.
Output: Learned dictionary Dt.
Steps:

1: Set A0 ← 0,B0 ← 0.
2: For t=1:T
3: Draw a new sample xt from p(x).
4: Sparse coding: find a sparse coefficient of xt under

current dictionary Dt−1.
5: At ← At−1 + αtα

T
t .

6: Bt ← Bt−1 + xtα
T
t .

7: Dictionary update: update dictionary Dt−1 column
by column, the j-th column is given by

8: For j=1:k
9: dj ← 1

(At)jj
(Bt(:, j)−DAt(:, j)) + dj .

if ‖dj‖2 > 1, then normalize it to unit form.
10: end for
11. end for
12. Return Dt.
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Fig. 1: Block diagram of the proposed framework. The parameter sweeping and dictionary training procedure are executed
on servers. The reconstruction process is performed on mobile platform for providing timely feedback. The random encoding
process using random Bernoulli matrix is embedded into the sensor node for effective data compression and energy saving.

3. THE PROPOSED FRAMEWORK

The most recent frameworks on ECG monitoring [17, 18, 19]
adopt a QRS detection process, such as the Pan-Tompkins al-
gorithm, prior to the sensing stage in order to locate the period
information of ECG signals. However, integrating the QRS
detection process into the sensor nodes not only occupying
CPU cycles but also burning excessive power. For wearable
applications, an energy-efficient framework must get rid of
such pre-processing stages on sensor nodes.

The block diagram of the proposed framework is shown
in Fig. 1. It is composed of three functional modules (i.e.,
dictionary learning, random encoding, and CS signal recon-
struction, performed on a server node, a sensor node, and a
mobile node, respectively).

The dictionary learning module is used to train person-
alized bases to capture the individual variability that is criti-
cal to exact signal recovery. As dictionary learning directly
extracts features from the segmented raw data, the learned
dictionary contains critical temporal and spatial information
needed for reconstruction. As a result, there is hardly a need
for signal alignment. To search for an optimum setup, we
first sweep each parameter used in dictionary learning, in-
cluding signal dimension, batch size for training, regulariza-
tion coefficient, and dictionary size. The derived parameters
are then applied to the dictionary learning module. As the re-
constructed signals are the linear composition of atoms in the
trained dictionary, a “clean” dictionary thereby have the de-
noising effect on signal reconstruction. To get a “clean” dic-
tionary, the training data is first filtered by a notch filter to re-
move power-line inference. Then the signal is passed through
a band-pass filter to remove baseline wandering and high-
frequency inference. Enabled by the pre-processing in the
dictionary learning stage, the proposed framework eliminates
the need of employing complicated pre-processing methods

prior to random encoding on the sensor node. Instead, a sim-
ple segmentation module is sufficient for clean reconstruc-
tion.

The initialization in dictionary learning is important. A
poorly initialized dictionary may contain bad atoms that are
never used [16]. Generally, the dictionary can be initialized
by random numbers or input data. For more difficult and regu-
larized problem, it is preferable to start from a less regularized
case and gradually increase the regularization coefficients. In
our framework, the dictionary is initialized by randomly cho-
sen columns from the input data set for simplicity.

The most notable advantage of ODL over other dictio-
nary learning algorithms, such as K-SVD, is that ODL does
not rely on the matrix factorization upon the entire training
data. As a result, the time cost is much less compared to the
non-online versions when handling large training datasets. So
a specific input ECG signal that carries new features, such as
disease information, can be quickly processed by the dictio-
nary learning module to update the dictionary when neces-
sary. As dictionary update does not depend on the previous
samples, the framework also eliminates the demand of large
storage space for prior inputs.

BP algorithm, running on the mobile node, is used in our
framework to reconstruct high-quality signals. As ODL is
compatible with other reconstruction algorithms, more com-
putation efficient algorithms (e.g., fast iterative shrinkage-
thresholding algorithm (FISTA) can be implemented to im-
prove accuracy-complexity trade-off).

4. EXPERIMENT RESULTS

Experiments are conducted to compare the performance of the
proposed framework in terms of recovery quality and CR with
the conventional CS frameworks adopting pre-determined ba-
sis for the reconstruction of ECG signal. All frameworks em-
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Table 1: Performance Comparison of CS frameworks

Framework CR PRD (%)
Proposed 10 9

Ansari-Ram et al. [5] 5 9
Casson el al. [7] 4 9

Mamaghanian el al. [1] 3.4 9
Chae et al. [6] 2.5 9

ploys the same random Bernoulli matrix Φ (0/1 only) as the
sensing matrix, so the hardware cost of the acquisition mod-
ule, i.e., the sensor nodes, are the same.

4.1. Performance Metrics

The compression ratio (CR) and percent root-mean-square
difference (PRD) are used as the performance metrics.

1) Compression Ratio (CR): CR is a measurement of the
reduction of the data required to represent the original signal
f . If m measurements are required to recover the signal with
dimension n, then

CR =
n

m
. (5)

2) Percent Root-mean-square Difference (PRD): PRD is
a measurement of the difference between the original signal
f and the reconstructed signal f ′. As arbitrarily low PRD can
be achieved by selecting a high DC level in signal f , a more
appropriate metric is to remove the DC bias in signal f as

PRD =
‖f − f ′‖2
‖f − f̄‖2

× 100, (6)

where f̄ is the mean of signal f .

4.2. Experiment Settings and Results

Through parameter sweeping, the dimension of the signal n is
set to 256, size of the dictionary k is set to 512. Experiments
are carried out based on the MIT-BIH Arrhythmia Database.
In the experiments, 649984 samples are divided into 2539
epochs. Each epoch contains 256 samples. Among all the
data sets, 512 epochs are randomly chosen to initialize the
dictionary, 1621 epochs are used to train the dictionary, and
the remaining is used as the testing set. For performance
comparison, the pre-determined basis used in the reference
framework is a joint basis composed by both discrete co-
sine transform (DCT) and descrete wavelet transform (DWT)
bases [20]. This is because the periods components (e.g. QS
waves) and the spike components (e.g. R wave) have sparse
representations on DCT and DWT basis, respectively.

Figure 2 shows the performance comparison results.
Overall, the proposed framework outperform the reference
framework significantly due to the use of personlized basis
in reconstruction . Specifically, an average PRD of 9%, re-
quired for diagnosis purposes [21], can achieved at a high CR

Fig. 2: Comparison of our proposed framework with conven-
tional CS framework in term of CR.

Fig. 3: Reconstruction result for a segment of ECG signal
when CR=10. (a) Original ECG signal; (b) Reconstructed
signal using pre-determined DCT-DWT joint basis; (c) Re-
constructed signal using online trained dictionary.

of 10x. This represents a 6.5x more sample size reduction
(engergy saving) than the reference framework [20]. Table 1
compares the proposed framework with existing CS frame-
works [1, 5, 6, 7] that adopt pre-determined basis in signal
recovery. In general, our framework is able to further improve
the CR by 2-4x for achieving an average PRD of 9%. Fig.3
demonstrates the high reconstruction quality of the proposed
framework in comparison to the reference framework [20]
when CR=10.

5. CONCLUSIONS

In this paper, we propose an energy-efficient data acquisition
framework combining the notion of CS and ODL for long-
term ECG monitoring. The framework significantly enhances
CS performance by learning personalized basis to inform sig-
nal recovery. Experiment results show that by moving pre-
processing to the dictionary learning stage, a simple segmen-
tation process in the sensor nodes is sufficient to recover high-
quality signals. In the future work, we will add sub-basis
onto which the abnormal ECG signal is projected, when the
“healthy” sub-basis is unable to model the original signal ac-
curately.

807



6. REFERENCES

[1] H. Mamaghanian et al., “Compressed sensing for real-
time energy-efficient ecg compression on wireless body
sensor nodes,” IEEE Trans. Biomed. Eng, vol. 58, no. 9,
pp. 2456–2466, Sep. 2011.

[2] U. Varshney, “Pervasive healthcare and wireless health
monitoring,” Mob. Netw. Appl., vol. 12, no. 2-3, pp.
113–127, Mar. 2007.

[3] F. Chen et al., “Design and analysis of a hardware-
efficient compressed sensing architecture for data com-
pression in wireless sensors,” IEEE J. Solid-State Cir-
cuits, vol. 47, no. 3, pp. 744–756, Mar. 2012.

[4] Y. Wang et al., “Optimizing boolean embedding matrix
for compressive sensing in rram crossbar,” in Proc. 2015
ACM/IEEE Int. Symp. Low Power Electron. and Design,
Rome, Italy, Jul. 2015, pp. 13–18.

[5] F. Ansari-Ram et al., “Ecg signal compression using
compressed sensing with nonuniform binary matrices,”
in 16th CSI Int. Symp. on Artificial Intell. and Signal
Process, May 2012, pp. 305–309.

[6] D.H. Chae et al., “Performance study of compressive
sampling for ecg signal compression in noisy and vary-
ing sparsity acquisition,” in IEEE Int. Conf. on Acoust.,
Speech and Signal Process, May 2013, pp. 1306–1309.

[7] A.J. Casson and E. Rodriguez-Villegas, “Signal agnos-
tic compressive sensing for body area networks: Com-
parison of signal reconstructions,” in Annu. Int. Conf. of
the IEEE Eng. in Med. and Biol. Soc., Aug. 2012, pp.
4497–4500.

[8] E.J. Candes et al., “An introduction to compressive sam-
pling,” Signal Process. Mag., vol. 25, pp. 21 – 30, 2008.

[9] E.J. Candes et al., “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency
information,” IEEE Trans. Inf. Theory, vol. 52, no. 2,
pp. 489–509, Feb. 2006.

[10] M. Elad and M. Aharon, “Image denoising via sparse
and redundant representations over learned dictionar-
ies,” IEEE Trans. on Image Process., vol. 15, no. 12,
pp. 3736–3745, Dec. 2006.

[11] M. Aharon et al., “k-svd: An algorithm for design-
ing overcomplete dictionaries for sparse representation,”
IEEE Trans. on Signal Process., vol. 54, no. 11, pp.
4311–4322, Nov. 2006.

[12] B. A. Olshausen and D. J. Field, “Sparse coding with an
overcomplete basis set: A strategy employed by v1?,”
Vision Res., vol. 37, pp. 3311–3325, Dec. 1997.

[13] L. Honglak et al., “Efficient sparse coding algorithms,”
in Advances in Neural Inform. Process. Syst., pp. 801–
808. MIT Press, 2007.

[14] L. Bottou and O. Bousquet, “The tradeoffs of large scale
learning,” in Advances in Neural Inform. Process. Syst.,
2008, pp. 161–168.

[15] J. Mairal et al., “Online dictionary learning for sparse
coding,” in Proc. of the 26th Ann. Int. Conf. on Mach.
Learn., 2009, pp. 689–696.

[16] J. Mairal et al., “Online learning for matrix factorization
and sparse coding,” J. Mach. Learn. Res., vol. 11, pp.
19–60, Mar. 2010.

[17] S. Lee et al., “A new approach to compressing ecg sig-
nals with trained overcomplete dictionary,” in EAI 4th
Int. Conf. on Wireless Mobile Commun. and Healthcare,
Nov. 2014, pp. 83–86.

[18] L. F. Polania et al., “Compressed sensing based method
for ecg compression,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
May 2011, pp. 761–764.

[19] M. Abo-Zahhad et al., “Compression of ecg signal
based on compressive sensing and the extraction of sig-
nificant features,” Int. J. of Commun., Network and Syst.
Sciences, vol. 8, pp. 97–117, 2015.

[20] F. Ren and D. Markovic, “18.5 a configurable 12-to-
237ks/s 12.8mw sparse-approximation engine for mo-
bile exg data aggregation,” in IEEE Int. Solid-State Cir-
cuits Conf., Feb. 2015, pp. 1–3.

[21] Y. Zigel et al., “The weighted diagnostic distortion
(wdd) measure for ecg signals compression,” IEEE
Trans. Biomed. Eng., pp. 1422–1430, 2000.

808


