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ABSTRACT

Fast and accurate detection of elderly falls can significantly reduce
the rate of morbidity and mortality. In the past decade, extensive
research has been performed to achieve real-time fall monitoring
solutions. In this paper, we consider the radar-based modality and
utilize the family of fractional Fourier transform to enhance the
motion Doppler signature of falls. Compare with the conventional
time-frequency analysis approaches, the proposed method achieves
higher signal energy concentration and thus yields improved fall
detection in low signal-to-noise ratio scenarios. Experimental results
are used to validate the theoretical analysis and to demonstrate the
feasibility of the proposed approach.

Index Terms— Radar Doppler spectrogram, fractional Fourier
transform, short-time Fourier transform, fall detection, biomedical
signal processing

1. INTRODUCTION

As a widely recognized major public health problem, elderly falls
can cause a variety of severe physical and psychological conse-
quences [1, 2]. Prompt attention with minimal time delay between
the fall event and medical treatment is critical to save the patients’
lives. Thus it has attracted significantly increased interest in both
industry and research communities, and several real-time monitoring
approaches have been developed over the last a few years. Those
approaches include active involvements (e.g. pressing a button) [3],
wearable accelerometer/gyroscope sensors [4, 5], floor vibration and
sound sensors [6], infrared detectors [7], video sensors [8] and radar
[9–14].

Among all the noninvasive fall monitoring techniques, the radar
technology is uniquely suitable due to its applicability to all types
of lighting conditions with less “false positives”. In [9–12], fall
detection was performed using a support vector machine (SVM)
classifier [13], while in [14], sparse Bayesian classifier was used,
which is superior to the SVM because fewer relevance vectors can
be used. Prior to the detections, all these schemes applied short-time
Fourier transform (STFT) to the raw date collected from the radar
receiver to acquire the spectrograms. Time-scale analysis based
wavelets are also reported in [15, 16].
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Fall and other human gaits generate time-varying Doppler and
micro-Doppler signatures which, over a short time period, can be
well approximated as a linear frequency modulation (LFM) signal,
which is also commonly referred to as a chirp. For various falls
and other events, the Doppler and micro-Doppler frequencies change
rapidly and, as such, conventional STFT suffers from a limited
frequency resolution and poor power concentration. As a result,
fall detection performance would degrade, particularly when the
input signal-to-noise ratio (SNR) is low. One promising solution
is to apply the family of fractional Fourier transform (FrFT) [17].
As FrFT projects signals onto chirp bases, it exhibits superior
capability to concentrate energy for signals approximately charac-
terizable by LFM. In addition, unlike the bilinear time-frequency
(TF) representations, the FrFT does not suffer form the effect of
cross-term interference. The FrFT approach can be defined over
a finite time window, known as the short-time fractional Fourier
transform (STFrFT) [18], which has found applications in chirp
signal separation [19], synthetic aperture radar image autofocusing
[20], and extraction of marine target micro-Doppler signatures [21].

In this paper, we exploit the FrFT and STFrFT concepts to
develop an effective elderly fall detection approach defined in the
fractional Fourier domain (FrFD). An FrFT-based threshold decision
method is developed, and FrFD features obtained from the STFrFT-
based spectrogram are chosen to classify the fall and non-fall events.
The high concentration of the FrFD spectrum enables improved
detection and the classification capability in low SNR situations.
The novelty of our approach lies in performing both detection and
classification in the time-fractional Fourier domain rather than in the
commonly used time-frequency domain.

The remainder of this paper is organized as follows. An
overview of FrFT and STFrFT, and an introduction of the signal
model are provided in Section 2. The proposed method is presented
in Section 3. The experimental setup and the analysis of the real data
processing is given in Section 4. Conclusion is drawn in Section 5.

2. SIGNAL MODEL

In our study, the transmitted waveform is an LFM continuous-wave
(LFMCW), as shown in Fig. 1. The continuous-time waveform
transmitted over the nth pulse period is given by

st(t) =
∞∑
n=0

Ate
j[2π(fc−B

2 )t+πµ((t−(n−1))T )2+ϕ0], (1)

for (n − 1)T ≤ t < T , where At stands for the transmitted signal
amplitude, fc represents the center frequency, B and T respectively
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Fig. 1. Instantaneous frequency of an LFMCW signal.

denote the sweep bandwidth and sweep time, µ = B/T is the chirp
rate, and ϕ0 is the initial phase at time t = 0.

The radar return from a point target is generally a time-delayed
and scaled replica of the transmitted signal. Thus, consider a point
target σ which is located at a distance of R0 from the radar at time
instant t0, and moves with a velocity of v(t) towards a direction
which forms an angle of θ between the radar direction. As such, the
radar echo signal corresponding to the point target is given by [14]

sr(t;σ) = Arst

(
t−

2R0 + 2
∫ t
t0
v(t) cos θdt

c

)
+ w(t), (2)

where Ar denotes the target reflection coefficient, c is the light
velocity, and w(t) represents additive white Gaussian noise.

The human body return can be regarded as the superposition of
returns from a finite number of point targets located over the body
region ΩA. Therefore, the return signal is the integration over the
region ΩA, which can be represented as [14]

ŝr(t) =

∫
σ∈ΩA

sr(t;σ)dσ. (3)

3. PROPOSED METHOD

3.1. Overview of FrFT and STFrFT

We first briefly summarize the FrFT and the STFrFT methods which
are used to develop the proposed work.

The mathematical definition of the pth-order continuous FrFT
[17] is given in (4), shown on the bottom of this page, where α =
pπ/2 is the fractional rotation angle, p is the order value, u denotes
the FrFD frequency, and D is an integer. Note that p can take an
arbitrary real value, and the classical Fourier transform corresponds
to the case of p = 1. For a certain chirp frequency modulation rate
µ, if α = arc cot(−2πµ), the signal energy will be concentrated
in the FrFD. The STFrFT is defined by multiplying the input signal
x(t) with a window g(t) before computing the FrFT [18], i.e.,

{STFrFTpx}(t, u) =

∫ ∞
−∞

g(τ − t)Kα(τ, u)x(τ)dτ , (5)

where Kα(τ, u)x(τ) is implicitly defined in (4).
The STFrFT uses a fixed time window to perform FrFT of the

signal over a certain length of time samples. The window size trades
off between the time resolution and frequency resolution. By com-
puting the STFrFT in a sliding window manner, the instantaneous
FrFD spectrum over the entire time period can be obtained.
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Fig. 2. Proposed human fall detection scheme.

3.2. Signal Representation in the Fractional Fourier Domain

The diagram of the proposed method is depicted in Fig. 2. The first
step is pre-processing of the collected raw data such as data format
conversion, direct current extraction, and data matrix reshape.

The (m, ñ)th element of the reshaped data matrix, s̃r , is
obtained from the received data ŝr(n) as

[s̃r](m,ñ) = sr ((m− 1)Np + ñ) , (6)

where m = 1, 2, . . . ,Mp and ñ = 1, 2, . . . , Np are the slow
and fast time indices, with Mp and Np respectively denoting the
number of slow-time pulses and the number of fast-time samples
per pulse. Pulse compression is then performed to the reshaped
data matrix over the fast-time samples, where the range data is
interpolated with a factor of two. The range-pulse figure,represented
by a (2Np)×Mp matrix Sr , can then be obtained through the
following fast Fourier transform (FFT) to identify range bins in
which strong target echoes are present:

Sr = FFT
{[

s̃r ·wMp×Np ,0Mp×Np

]T}
, (7)

where w represents a Hanning window, and 0Mp×Np is the
Mp ×Np matrix with all zero elements. Based on this result,
further signal processing is applied to ranges with a high energy,
representing possible events to be analyzed. The chirp rate of the
signal is estimated by using discrete polynomial-phase transform
(DPT)-FrFT [22]. Alternatively, when the signal has a long length
(Mp > 212), the segmented DPT-sparse discrete fractional Fourier
transform (SDFrFT) [23] can be used for fast computation.

Because elderly falls may be accompanied by motions in other
body parts and/or cluttered by possible motion of other objects, the
signal should be generally characterized with a multi-component
time-varying spectrum. Consider a range bin bt, the estimated
chirp rate, µ̂k, of the kth signal component in the presence of K
components is obtained from [22]

µ̂k =
1

τLs∆t
arg max

fk

∣∣∣DPT2{S̃(p, m̂), f, τ}
∣∣∣, (8)

for k = 1, 2, . . . ,K, where DPT2{·, f, τ} denotes the order-two
DPT operation, τ is a positive integer, f is the frequency-domain

{FrFTpx}(u) =

∫ ∞
−∞

Kα(u,t)x(t)dt =


√

1−j cotα

2π

∫ ∞
−∞

ej t
2+u2

2
cotα−jtucscα · x(t)dt, α 6= Dπ,

x(t), α=2Dπ,
x(−t), α= (2D ± 1)π,

(4)
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index, and ∆t denotes the sampling interval. In addition,

S̃(p, m̂) =

Ls∑
l=1

Sr(bt, (p− 1) · Ls + l)e−j2πm̂l/Ls , (9)

where l = 1, 2, . . . , Ls, m̂ = 1, 2, . . . , Ls, and p = 1, 2, . . . , Ps,
with Ps denoting the number of segments, Ls the number of samples
per segment, and Mp = LsPs.

To obtain high-resolution and cross-term-free TF representa-
tions, the FrFT/SDFrFT methods are then applied to Sr(bt, :)1×Mp .
To obtain a finer estimation, an exhaustive search near the confirmed
chirp rates within the±5∆µ range is conducted, where the step size
is given as ∆µ = (2/(MpNp∆t))

2 [23]. In [9], the energy burst
curve (which is also referred to as the power burst curve in [14]) of
the signal was used to detect an event and initiate the classification
process. The idea behind it is to identify the signal power presence
in a low but non-zero frequency band where human activities can be
detected whereas the effect of stationary clutter is excluded. When
the signals are represented in the FrFD, this becomes equivalent
to examine whether an FrFD spectral line with the zero fractional
frequency exceeds the detection threshold. A positive result will
ignite the motion classification procedure. Note that, because the
radical acceleration of human fall motion is unlikely to exceed the
free fall acceleration g=9.8 m/s2, the corresponding chirp rate can be
considered up bounded.

3.3. Fall Detection based on Bayesian Classifier

The main task of the classifier is to distinguish between fall and
non-fall events. For classification of human activities, especially fall
and non-fall events, a number features have been used [6, 13, 14].
These features include the peak Doppler, offset of the total Doppler,
total Doppler bandwidth, standard deviation of the Doppler signal
strength, extreme Doppler ratio, and period of the event. In this
paper, we consider the following temporal and spectral features that
bear the same spirit but are more feasible for the STFrFT-based
analysis: Period T (same as the Length of Event in [14]), Chirp rate
µ (corresponds to the Extreme Frequency Magnitude in [14]), and
FrFD bandwidth B. Note that the FrFD bandwidth is descriptive
because the FrFD spectrum of fall events are concentrated, whereas
that of non-fall events are not.

The input of the Bayesian classifier, observation vector zn,
contains the extracted values of the selected features from the
STFrFT-based spectrogram, i.e.,

zn = [T̂n, µ̂n, B̂n]T ∈ R3, (10)

where subscript n is used to underscore event n. The decision rule
classifies zn to the class ω(zn) that has the highest a posteriori
probability between the two classes, fall class ω1 and non-fall class
ω2, as

ω(zn) = arg max
ω∈{ω1,ω2}

{P (ω|zn)}, (11)

where P (ω|zn) is the a posteriori probability. The data set zn
generally follows the Gaussian distribution [6, 14]. Denote the mean
vector and the covariance matrix of the kth class (k = 1, 2), as ξk
and Ck, respectively. Then, the conditional density function is [6]

p(zn|ωk) =
1√

(2π)3 |Ck|
e
− 1

2
(zn−ξk)TC−1

k
(zn−ξk)

, (12)

where (·)T denote transpose, and |C| stands for the determination
of matrix C. The Bayesian decision rule of the adopted quadratic

(a) Data collection module (b) Experiment scene
Fig. 3. Illustration of experimental setup.

classifier [6] is given by ω(zn) = ωi with

i = arg max
k=1,2

{
−1

2
ln |Ck| −

1

2
(zn − ξk)TC−1

k (zn − ξk)

}
.

(13)
(13) chooses class ωi for a specific vector zn in the three-
dimensional (3D) feature space under the maximum a posteriori
(MAP) criterion.

4. EXPERIMENT SETUP AND RESULT ANALYSIS

4.1. Experimental setup

In the experiment, an ANCORTEKTM SDR-KIT 580 module [24] is
used for radar data collection. It is a software-defined transmitter-
receiver system and can be controlled by graphic user interface
installed on a laptop computer. The SDR-KIT 580 module and the
experiment scene are shown in Fig. 3.

For transmitted waveform shown in Fig. 1, the echo signal is
mixed with the transmitted signal to perform de-chirp process. The
center frequency fc, sampling rate fs, and sweep bandwidth B are
set as 5.8 GHz, 130 KHz, and 100 MHz, respectively. The sweep
time T is 0.9830 ms, yielding a slow-time pulse repetition frequency
of 1017 Hz. In the TF analysis, a 203-point Hanning window is
applied to the slow-time samples. The radial range between the
experimental subject and the radar varies between 2 and 11 meters.

We conducted experiments with four different motion patterns,
including walking, running, deep squat, and falling. The first three
motion patterns are collectively considered as non-fall events. Each
of these motion patterns are repeated for ten times by different
laboratory assistants. The fall events are repeated for 30 times. As
such, a total number of 60 data sets are collected. Half of those data
sets are included for training, and the other half data sets are used for
classification.

4.2. Experiment results and discussion

To demonstrate the advantage of the proposed FrFD-based approach,
the signal spectra and TF representations of the experimental data
are illustrated in Fig. 4. A notable zero-frequency (direct current,
DC) component with a Doppler modulation in the adjacent region is
observed in Figs. 4(a) and 4(d). The results after the DC component
removal are shown in Figs. 4(b) and 4(e). It can be estimated from
Fig. 4(e) that a fall event occurs at t = 1.3 s and lasts about 0.64 s.
The fact that the Doppler frequency varies from the DC to about 80
Hz indicates that the subject falls towards the radar. The estimated
radical acceleration was about 2.07 m/s2, which coincides well with
the experimental facts. In Figs. 4(c) and 4(f), the FrFT/STFrFT
methods were applied to the DC-removed data, and the target spike
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(b) FFT of the data after DC removal
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(f) STFrFT of the processed data

Fig. 4. Experiment results.
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Fig. 5. Performance comparison between FFT and FrFT based
algorithms with different input SNRs.

in Fig. 4(c) is increased by a factor of 2.5. Therefore, a better
detection capability in low SNR case is expected.

To verify this fact, white Gaussian noise is added to the raw
data collected in the experiments, and the results are depicted in Fig.
5. In the −10 dB SNR case, the result of the FrFT-based method
is 5.1 dB higher than that of the FFT-based method. On the other
hand, when the SNR is −18 dB, the fall-induced spike using the
FFT-based method becomes invisible, whereas the output SNR of the
FrFT-based method remains a high level of 9.5 dB and thus enables
reliable fall detection.

By utilizing the Bayesian classifier descried in (13), we compute
the decision boundaries between the two classification models. Fig.
6 shows the training results of the three features defined in (10). It
is seen from Fig. 6(b) that the fall events have higher chirp rates
and fixed time lengths of around 0.7 s, whereas it is observed from
Fig. 6(c) that the FrFD bandwidths of the fall events are much better
concentrated near zero region.

Table 1 provides the confusion matrices of all the data sets
being tested. The first three results are computed using the three
2D spaces in the same order as Figs. 6 (b)-(d), while the last result
is computed using the 3D space, and all these results are separated
by slashes. The test result shows that while any 2D feature space
does not provide a perfect distinction, the fall and non-fall events
are well separated in the 3D space for classification, which clearly
demonstrating the effectiveness of the proposed FrFD automatic
human fall detection scheme.
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Fig. 6. 3D scatter plot and the projection of the training feature
vectors on different 2D space.

Table 1. Confusion Matrices

Real type Classification result
fall events non-fall events

fall events 14/14/12/15 1/1/3/0
non-fall events 3/0/0/0 12/15/15/15

5. CONCLUSION

A novel radar fall detection scheme was proposed for assisted living
and elderly fall detection. Different from existing time-frequency
domain methods, it is the first time to address this problem in the
fractional Fourier domain, where an FrFT-based threshold decision
triggers the classification procedure and an STFrFT-based feature
extraction facilitates the classification. Experiment results confirmed
that the proposed scheme can achieve an enhanced detection perfor-
mance, especially in low SNR cases.
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