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ABSTRACT

Sleep-disordered breathing (SDB) is a highly prevalent condition as-
sociated with many adverse health problems. As the current means
of diagnosis (polysomnography) is obtrusive and ill-suited for mass
screening of the population, we explore a minimal-contact, auto-
matic approach that uses acoustics-based methods in conjunction
with pulse oximetry. We present a two-stage method for automat-
ically classifying breathing sounds produced during sleep to track
respiratory effort and predicting disordered breathing events using
respiratory effort durations and oxygen desaturations. We compare
our method for tracking respiratory effort and predicting disordered
breathing with human expert event scoring. Our subject-independent
method tracks respiratory effort with 87% accuracy and predicts dis-
ordered breathing events with 40–52% accuracy.

Index Terms— sleep apnea, breathing, polysomnography

1. INTRODUCTION AND BACKGROUND

Sleep-disordered breathing (SDB) is believed to be a widespread,
under-diagnosed condition associated with many detrimental health
problems [1, 2]. Young et al. describe the total burden of sleep-
disordered breathing on the health system and society as “stag-
gering” [3]. The current gold standard for diagnosis of sleep-
disordered breathing is a sleep study, or polysomnography (PSG).
This overnight procedure is obtrusive, requiring many sensors to
be attached to the patient’s body; moreover, it is time-consuming,
expensive, and ill-suited for mass screening of the population.

Previous studies have explored acoustics-based approaches us-
ing high-quality audio recordings of sleep breathing sounds. Several
studies focus on snore detection, as snoring is seen as a possible
indicator for the most common form of SDB, obstructive sleep ap-
nea (OSA) [4, 5], based on the hypothesis that snore signals carry rel-
evant information about the state of the upper airways, especially the
partial or full collapse thereof [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Current work seeks to not simply supplement typical PSG sen-
sors with less obtrusive alternatives, but to also explore automatic
and computer-assisted manual SDB event scoring of clinical and
home sleep recordings, with an eye toward “scoring as a service”
rather than in-house scoring. Several recent studies address various
facets: the performance of automated PSG scoring versus computer-
assisted manual scoring [17]; the accuracy of automated scoring
of home sleep recordings [18]; the efficacy of portable sleep test-
ing [19]; inter-labeler agreement across sleep centers [20, 21]; and
a comprehensive survey of the numerous “state of the art” methods
for computer-assisted SDB event scoring [22].

In this study, we build on our previous work [23], using
minimally-obtrusive sensors and an automatic, two-stage method
for classifying breathing sounds to track respiratory effort and pre-
dicting disordered breathing events using respiratory effort durations
and oxygen desaturations.

2. DATA
2.1. Data collection

As our approach relies on acoustic data not typically collected dur-
ing full-night PSG, we created a corpus of PSG sensor data and
time-aligned high-quality audio. We collected the data during rou-
tine clinical PSG at Oregon Health & Science University’s sleep lab.
Trained PSG technicians and clinicians scored each study per the
AASM guidelines in effect at the time of the study [24]. A total of
15 adult subjects participated in the study.

We recorded uncompressed 16-bit audio at a sampling rate of
16 kHz using a highly directional microphone (Audio-Technica
AT8035). The microphone was affixed to an articulated microphone
stand in the subject’s room and oriented toward the subject’s head
when in a supine position. Audio recordings were made in paral-
lel with typical PSG sensor data during each overnight study. We
time-aligned the separate, high-quality audio recordings with the
low-quality audio captured by the PSG system’s passive infrared
video camera, thereby time-aligning the high-quality audio with the
PSG sensor data.

We referred to technician annotations on the scored PSG studies
to exclude audio recorded before each subject fell asleep or after he
or she woke up to constrain our analysis to only those respiratory
sounds made during actual sleep. We also excluded audio that was
captured after remedial measures were taken (e. g. positive airway
pressure was titrated or oxygen was administered), as these mea-
sures introduced additional airflow noise in the sleep environment
near the subject’s mouth and nose. Many subjects had very little
time asleep before remedial measures were taken. Finally, we also
excluded audio that contained air conditioner, fan, furnace, or tele-
vision background noise. After considering these factors, only 4 of
the 15 subjects had usable sleep breathing audio.

2.2. Manual respiratory effort labeling

For each subject, we identified four continuous regions of audio,
each approximately four minutes in length. We selected these re-
gions from various times during the night to cover possible differ-
ences due to stage of sleep, bed posture, varied breathing patterns
and rates, and episodes of snoring. Additionally, we consulted the
PSG data to ensure that a variety of apneic and typical events were
present in the selected regions of audio.
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We then listened to each region of audio while visually inspect-
ing the corresponding spectrogram and applied respiratory effort la-
bels. We labeled inhalation as either breathing-in (Bi ) or snoring-
in (Si ), and exhalation as either breathing-out (Bo) or snoring-out
(So). Finally, we labeled the remaining portions as no-effort (N ).

Figure 1 illustrates a brief excerpt of an example region and the
corresponding respiratory effort labels. Note that a single inhalation
or exhalation may consist of more than one constituent type, such as
a breathing-in that turns into a snoring-in. During manual labeling,
we restricted a single inhalation or exhalation to include up to three
constituent portions. For example, an inhalation may be as complex
as Bi -Si -Bi (see Figure 1, 3.8–5.6 seconds), but not Bi -Si -Bi -Si.
Only one of the subjects exhibited So events in the selected regions.
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Fig. 1. Waveform, spectrogram, and respiratory effort labels for a
brief excerpt of an example region of audio.

3. EXPERIMENT

Building on our previous work, we first used acoustic features ex-
tracted from high-quality audio to classify sleep breathing sounds
into respiratory classes (Stage I, Section 3.1). Then, we used fea-
tures extracted from the output of Stage I with additional features
extracted from pulse oximetry data (in this case, peripheral capillary
oxygen saturation, or SpO2) for use in a new, second-stage classifier
(Stage II, Section 3.2).

3.1. Stage I: Respiratory effort classification

3.1.1. Feature extraction

We used reflection coefficients from linear predictive coding (LPC),
the highest-performing acoustic features from our previous work.
We extracted these features from the audio waveform for each re-
gion using a frame length of 150 ms, zero overlap, and a Hanning
analysis window. For each frame, we calculated 13 LPC coefficients
and their first-order deltas.

3.1.2. Classifier

During initial exploration of our corpus, we noted that the intra-cycle
no-effort portion was typically much shorter than the inter-cycle no-
effort portion. We therefore created four discrete no-effort types
that preserve the temporal relationship of the no-effort label with
the surrounding respiratory effort labels. We use a hidden Markov

model (HMM) to predict state sequences to capitalize on the sequen-
tial nature of a typical respiratory cycle. We assume a priori that
respiratory effort states evident in the acoustic data can be learned
and predicted by the HMM, much like phone states in speech recog-
nition applications. Figure 2 illustrates the topology of the Stage I
model. Note that each respiratory effort type consist of three states
per label, while the no-effort types only consist of one state.

We observed many interesting respiratory cycle phenomena dur-
ing manual labeling. For example, within a single inhalation, a
breath-in may turn into a snore-in; likewise, during an exhalation, a
snore-out may degrade into a breath-out. Additionally, we observed
that an inhalation may be immediately followed by an exhalation,
with no intermediate no-effort state (top arcs emanating from null
states in Figure 2). Finally, we account for multiple short inhala-
tion or exhalation attempts in rapid succession, separated by brief
no-effort (N ) states (bottom arcs). We observed this type of phe-
nomenon during obstructive apnea events, when a subject tried re-
peatedly to breathe in with limited success. We designed our model
to capture these various phenomena via learning the transition prob-
abilities between states.

3.1.3. Automatic label remapping

A remapping algorithm is necessary to convert respiratory effort la-
bels to the state names used by the model. Similar to our previous
work, we divided individual inhalation and exhalation labels accord-
ing to the same original rules: (1) if a label consists of one con-
stituent, divide the label into three equal-duration states; (2) if a label
consists of two constituents, divide the longer-duration portion into
two equal-duration states, and assign the shorter-duration portion to
a third state; and (3) if a label consists of three constituents, assign
each portion to a single state, preserving the original durations.

We enhanced the remapping algorithm to convert no-effort (N )
labels into the four discrete no-effort types: N between inhala-
tions (Nii ); N between inhalation and exhalation (Nio); N between
exhalation and exhalation (Noo); and N between exhalation and
inhalation (Noi ).

3.1.4. Training and testing

We used a k-fold cross-validation scheme, separating the data into
different training and testing sets. For each fold, we held out one
subject’s data for testing, using the remaining three subjects’ data
for training. Each training set contained 48 minutes of audio, with
16 minutes held out for testing. The held-out portion was cycled
through all four folds, and the resulting fold’s training and testing
sets were used to train and test the Stage I classifier, respectively.

We calculated the start probabilities (π) and transition probabili-
ties (A) using observed sequences from the training set. Next, using
the state-labeled data, we grouped the frame-level feature vectors
from the training set by state. For each state, we calculated the mean
and covariance of the feature vectors for that state. We used these
statistics to fit a Gaussian mixture model (GMM) for each state (with
three mixture components and full covariance), to model the obser-
vation probabilities (B). Then, we initialized the HMM using the
precomputed π-values and A and B matrices. Finally, we used the
HMM to decode the test set using the Viterbi search algorithm. We
recorded the predicted state sequences, mapping model state names
back to respiratory effort labels, and then merging identical adjacent
labels to enable direct comparison to the original, manually labeled
sequences.
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Fig. 2. HMM topology with three states per respiratory label type (Bi, Bo, Si, So) and one state per no-effort type (Nii, Nio, Noo, Noi ).
Stars (?) denote the null state at the start of a respiratory cycle. Nulls (∅) denote intermediate null states.

3.2. Stage II: Disordered breathing classification

3.2.1. Feature extraction

When scoring PSG studies, trained clinicians and PSG technicians
evaluate respiratory effort, airflow, and SpO2 data to identify dis-
ordered breathing events, looking for reduction in or cessation of
breathing effort or airflow and a corresponding drop in blood oxy-
gen saturation, in accordance with AASM guidelines [24]. With
these criteria in mind, we created new feature vectors for Stage II
by extracting respiratory effort features from the output of Stage I,
incorporating additional SpO2 features extracted from the PSG data.

During manual labeling of respiratory effort (Section 2.2), we
noted changes in respiratory effort label duration during disordered
breathing events such as hypopnea (H ), obstructive apnea (OA ), or
central apnea (CA ), when compared to typical breathing (T ) of that
same effort type. (Mixed apnea was possible but not present in our
corpus, so it is omitted from further discussion.) Based on this dis-
covery, we selected duration-related respiratory effort features. Us-
ing the predicted respiratory effort labels from Stage I, we extracted
the duration of the current respiratory effort label to create a one-hot
duration vector for each frame. In this design, only one of the eight
possible effort labels can be “hot” (i. e. non-zero) per frame.

Figure 3 depicts respiratory effort label durations wholly con-
tained within a given disordered breathing event. Red scatterplot
markers indicate a significant difference in mean duration from typ-
ical breathing (T ) for a given respiratory effort label (p < 0.05).
Note the significant shortening of inhalation (Bi, Si ), intra-cycle no-
effort (Nio), and exhalation (Bo) labels and lengthening of inter-
cycle no-effort (Noi ) labels during hypopnea (H ). Also note the
mere presence of snoring is not necessarily indicative of disordered
breathing, but a significant decrease in snore-in (Si ) duration may in-
dicate disordered breathing. Similarly, a significant decrease in intra-
cycle no-effort (Nio) may also indicate disordered breathing. In-
stances of snoring (So) and no-effort (Noo) during exhalation were
very rare in our corpus.

We then extracted SpO2 features from the time-aligned PSG
data. First, we estimated a single “baseline” SpO2 value per subject
by computing the 95th-percentile SpO2 value from each full-night
study. Next, we computed a desaturation from baseline value for
each frame, where desaturation was defined as the baseline minus
the observed SpO2 value. Finally, we appended this desaturation
value to the one-hot duration vector to form the feature vector for
each frame. Figure 4 illustrates the Stage I respiratory effort labels,
SpO2 desaturation, corresponding Stage II feature vectors, and dis-
ordered breathing event labels for a brief excerpt of training data.
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Fig. 3. Respiratory effort label (subplot title) durations (y-axis,
in seconds) by disordered breathing type (x-axis). Red scatterplot
markers indicate a significant difference in mean duration from typ-
ical breathing (T ) of that same effort type (p < 0.05).

3.2.2. Classifier

We created a new, second-stage HMM to classify disordered breath-
ing events during sleep. Figure 5 illustrates the topology of the Stage
II model. In this stage, the possible states represent observed disor-
dered breathing types: typical breathing (T ), hypopnea (H ), obstruc-
tive apnea (OA ), and central apnea (CA ).

3.2.3. Training and testing

As in Stage I, we used a k-fold cross-validation scheme, replacing
the Stage I respiratory effort HMM topology with the Stage II disor-
dered breathing topology, and using the Stage II duration and desat-
uration feature vectors. For each fold, we held out one subject’s data
for testing, using the remaining three subjects’ data for training to
initialize the HMM, then predicting the disordered breathing labels
for the test set. During testing, we noted that the sparsity of the So
and Noo effort types hindered Stage II classification accuracy; we
then excluded those two types from the one-hot duration portion of
the Stage II feature vectors.
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Fig. 4. Stage I respiratory effort labels (Si–Bo pattern), SpO2 de-
saturation, corresponding Stage II duration and desaturation feature
vector, and disordered breathing event labels (hypopnea, 3.5–29.5 s,
surrounded by typical breathing) for a 40-second excerpt.
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Fig. 5. Stage II HMM topology with one state per disordered breath-
ing type (H, OA, CA ) and one state for typical breathing (T ).

4. RESULTS
4.1. Stage I

As in our previous work, we evaluated Stage I classifier accuracy
at three levels of granularity: fine-, medium-, and coarse-grain ac-
curacy. For fine-grain accuracy, we combined states of the same
type into one event (e. g. predicted states Si 1, Si 2, and Si 3 were all
merged into one Si event). The fine-grain accuracy was used to eval-
uate the basic accuracy of the classifier. For medium-grain accuracy,
we combined in and out events of the same parent type into one
category: Bi and Bo labels were both considered “breath” (B ); Si
and So were “snore” (S ), and all four no-effort labels became “no-
effort” (N ). The medium-grain accuracy was used to evaluate the
potential for identifying breaths and snores. Finally, for coarse-grain
accuracy, we combined all breath and snore labels into one generic
“effort” (E ) label, to evaluate the potential for identifying effort ver-
sus no-effort in the breathing cycle.

Table 1 summarizes our Stage I accuracy results by label gran-
ularity. We observed very good tracking of respiratory effort at the
coarse- and medium-grain levels, with the classifier generally pre-
dicting effort correctly but occasionally confusing loud breathing for
snoring or very quiet breathing for no-effort. In the latter case, the
predicted N labels exhibited high confusability with other N labels
due to the classifier losing track of the inhalation–exhalation cycle.

Label granularity

Fine Medium Coarse

Effort labels Bi, Bo, Si, So B, S E
No-effort labels Nii, Nio, Noo, Noi N N

Accuracy 0.57 (0.10) 0.75 (0.04) 0.87 (0.02)

Table 1. Stage I classifier results for mean fine-, medium-, and
coarse-grain accuracy and standard deviation.

4.2. Stage II

We evaluated Stage II classifier accuracy in a similar manner as in
Stage I, with two levels of granularity: fine- and coarse-grain accu-
racy. For fine-grain accuracy, we left events as is, allowing all four
possible event labels: typical breathing (T ), hypopnea (H ), obstruc-
tive apnea (OA ), and central apnea (CA ). For coarse-grain accuracy,
we combined all disordered events into one generic “disordered” la-
bel, to evaluate the potential for identifying typical breathing versus
disordered breathing.

We ran four variations in Stage II: first using the manually-
labeled respiratory effort when extracting the one-hot duration
features, then using the Stage I-predicted respiratory effort; and a
second pass considering only subjects with some degree of disor-
dered breathing according to the scored full-night PSG. Table 2
summarizes our Stage II accuracy results by subject type, effort
label source, and label granularity.

Subjects Label source Label granularity

Fine Coarse

All Manual 0.39 (0.22) 0.40 (0.23)
Stage I 0.39 (0.22) 0.40 (0.22)

Disordered Manual 0.50 (0.12) 0.52 (0.12)
Stage I 0.50 (0.12) 0.51 (0.12)

Table 2. Stage II classifier results for mean fine- and coarse-grain
accuracy and standard deviation, using manually-labeled (“Manual”)
and Stage I-predicted (“Stage I”) respiratory effort.

5. DISCUSSION AND FUTURE WORK

Stage II classification accuracy, while generally poor, was relatively
unchanged when moving from the manually-applied respiratory ef-
fort labels to the Stage I-predicted labels. Upon further exploration
of the underlying audio and oximetry data, we discovered that many
manually-labeled disordered events had minimal (i. e. 3–4%) desat-
uration or effort label duration. Despite attempting to adhere to
AASM scoring criteria (3–4% desaturation from baseline with a re-
duction of effort lasting 10 seconds or more), we surmise that: (1)
the included signals are insufficient to fully capture the notion of
both respiratory effort and airflow; and (2) human experts use addi-
tional knowledge that is not codified in the AASM criteria, whereas
our algorithm strictly adheres to the criteria.

We plan several enhancements in future work: first, to use ef-
fort and airflow data from PSG sensors directly, rather than a surro-
gate (high-quality audio); next, to create a substantially larger corpus
to address sparsity issues; and finally, to leverage additional machin-
ery (e. g. deep neural networks) to learn the features and patterns that
trained human experts intuitively extract and recognize when evalu-
ating PSG sensor data.
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