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ABSTRACT

Removal of muscle artifacts from the ECG signals is crucial
for a reliable and accurate measurement of local features of
ECG signals. In this paper, we present an automatic method
for removal of muscle artifacts from ECG signals, based on
four steps: decomposing ECG signal using sparse signal de-
composition on mixed dictionaries; obtaining QRS complex
signal; determining time-instants of R-peak; and removal of
muscle artifacts from ECG signal. The noise reduction per-
formance of the proposed method is tested and validated us-
ing ECG signals taken from a standard MIT-BIH Arrhythmia
database. The reconstructed signals are assessed using both
subjective quality assessment test and objective quality as-
sessment metrics. Performance evaluation results show that
the proposed method outperforms other existing ECG denois-
ing methods inadequately removing the muscle artifacts with-
out significantly distorting the morphologies of P-wave, QRS-
complex and T-wave of the ECG signals.

Index Terms— Electrocardiogram (ECG), ECG denois-
ing, QRS detection, ECG arrhythmias, muscle artifacts

1. INTRODUCTION

The electrocardiogram (ECG) is often contaminated by mus-
cle artifacts [1]- [6]. The ECG signal is a widely used diag-
nostic tool for analysis and diagnosis of heart abnormalities
related with different types of arrhythmias. Generally, muscle
artifacts are ubiquitous in wearable health care monitoring
and holter monitoring which distort both temporal-spectral
characteristics of ECG signal [1]. In wearable ambulatory
monitoring conditions, it has been observed that the local
waves of the ECG signal are often masked by muscle arti-
facts. In most clinical evaluation cases, the cardiac diagnosis
must be made more accurately. Therefore, the detection and
removal of muscle artifacts from the ECG signal poses a
real challenge and is crucial for the reliable interpretation of
ECG-based quantitative measures. Numerous methods have
been developed for detection and removal of artifacts in the
ECG signals [1]- [12]. The existing methods are based on
the signal processing techniques including, empirical mode
decomposition (EMD) [1, 2], singular value decomposition
(SVD) filter [4], morphological operators [5], independent

components analysis [6], ensemble empirical mode decom-
position (EEMD) [7], nonlinear Bayesian filtering frame-
work [8], wavelet transforms [9,10], EMD and wavelet trans-
form [9,10], and Genetic algorithm and wavelet scheme [11].

A variety of discrete wavelet transform (DWT) and EMD
based filtering methods have been presented for removal
of artifacts from ECG signal. Many wavelet-based ECG
denoising methods were reported by exploiting the multires-
olution characteristics of the ECG signals and different types
of noises. Most DWT based methods include the following
steps: wavelet decomposition of ECG signal using prede-
fined wavelet filters and decomposition level, selection of
characteristics subbands for discriminating artifacts and local
waves of ECG signal using the frequency ranges of wavelet
subband for the fixed sampling rates; the detection of artifacts
using the statistical parameters; and suppression of artifacts
and the reconstruction of enhanced ECG signal. In [1], Lee
Jinseok et al. reported a method for automatic motion and
noise artifact detection in holter ECG data using EMD and
statistical approaches [1]. The method consists of two stages:
determining the first mode of intrinsic mode function (F-
IMF) of the EMD of ECG signal and calculation of signal
complexity and variability statistics such as Shannon entropy,
mean, and variance. This method assumes that the F-IMF
of clean ECG segments have periodic patterns whereas the
MN-artifact-corrupted ECG segments have highly varying
irregular dynamics with lower magnitudes. In general, the
EMD based ECG denoising methods include the following
steps: decomposition of ECG signal using EMD/EEMD al-
gorithm, selection of intrinsic mode functions (IMFs) for
detection and removal of artifacts; and reconstruction of de-
noised ECG signal [1, 2]. The wavelet denoising method
attempts to separate clean and noisy wavelet coefficients, but
it can be difficult to use since it requires identification of the
location of each local waves including P-wave, QRS complex,
and T wave. Furthermore, the noise may be spread over dif-
ferent levels of detail coefficients in wavelet decomposition.
Hence, we cannot fix the level of decomposition required for
exact removal of muscle artifacts. In EMD based decompo-
sition approach, muscle artifacts and impulsive noises may
be distributed over a number of IMFs. Thus, it is difficult
to automate the process of denoising because the number of
IMFs required to be estimated for denoising a particular noisy
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ECG signal cannot be determined by any off-line processing.
Therefore, in this paper, we investigate the sparse signal de-
composition and reconstruction on mixed dictionaries which
can effectively capture the local waves of ECG signal and
artifacts, in particular muscle artifacts and impulsive noises.

An automated method to separate clean ECG portions
from segments with muscle artifacts is most essential for
more accurate diagnosis and treatment of clinically important
atrial arrhythmias. In this paper, we present sparse signal
decomposition and reconstruction framework for removal of
muscle artifacts from the ECG signal. The proposed method
consists of four major steps: decomposing ECG signal using
sparse signal decomposition on mixed dictionaries; obtaining
QRS complex feature signal; determining time-instants of
R-peak; and removal of muscle artifacts from ECG signal.
The performance of the proposed method is tested and vali-
dated using the clean and noisy ECG signals taken from the
standard MIT-BIH Arrhythmia database. The reconstructed
signals are assessed using both subjective quality assessment
test and objective quality assessment metrics. Performance
evaluation results show that the proposed sparse signal de-
composition and reconstruction framework outperforms other
existing ECG denoising methods in adequately removing the
muscle artifacts without significantly distorting the morpho-
logical features (including, amplitude, duration, polarity, and
shape) of local waves such as P-wave, QRS-complex, and
T-wave of ECG signal. The rest of the paper is organized
as follows. Section 2 describes the proposed framework. In
Section 3, the method is validated using real ECG signals
and ECG signal corrupted with synthetically generated with
muscle artifacts taken from MIT-BIH arrhythmia database.
Finally, conclusions are drawn in Section 4.

2. PROPOSED DENOISING FRAMEWORK

In this section, we present a sparse representation frame-
work for removal of muscle artifacts from the ECG signals.
The proposed framework consists of following steps: de-
composing ECG signal using sparse signal decomposition
on mixed dictionaries, obtaining QRS complex signal, de-
termining time-instants of R-peak, extracting QRS complex
portion within the duration of 100 ms centered at the identi-
fied R-peak instant and reconstruction of the denoised ECG
signal using the subsignals obtained for the dictionaries of
P/T waves, QRS complexes and the extracted QRS com-
plex portions using the previous step. The signal processing
steps of the proposed algorithm are described in the table of
Algorithm 1.

In this subsection, we first introduce sparse representation
of ECG signals and different noises on mixed dictionaries
for extracting the ECG local waves and different noises si-
multaneously. An ECG signal x can be represented with
time-localized and frequency-localized elementary wave-
forms on hybrid mixed dictionary matrix Ψ ∈ RP×Q such

Algorithm 1 Proposed muscle artifacts removal algorithm
Input: Fs = 360 Hz,N1 = T ∗ Fs, shift=50 ms.
x← Input ECG signal
Fs← Sampling frequency
T← Time in sec
k=1;
for i = 1 : N1 : length(x) do
Step0: Read ECG signal corrupted with muscle artifacts
Step1: Decompose the signal using SSD into xBW , xPL, xPT , xQRS and
xSPK .
Step2: Detect R-peak from xQRS

Rpeak = RPeakDetector(xQRS ,x,Fs); // Using algorithm 2
Step3: Add QRS portion from xSPK to xPT and xQRS

shift = 50*Fs;
q=1;
xptqrs=xPT + xQRS ;
sig = [zeros(shift,1); xSPK ; zeros(shift,1)];
sig1 = [zeros(shift,1);; xptqrs; zeros(shift,1);];
Rpeak = Rpeak+shift;
for jj=1:length(Rpeak) do

WI = Rpeak(k)-shift;
WE = Rpeak(k)+shift;
wsig = sig(WI:WE);
wsig1=sig1(WI:WE);
w=wsig+wsig1;
sig1(WI:WE)=w;
q = q+1;

endfor
x̂=sig1;
x̂=x̂(NW+1:end-NW); // EMG removed signal
k=k+1;

endfor

that P < Q is given as x = Ψα =
∑Q
i=1 αiψi, where

α = [α1, α2, · · ·αQ] is the sparse vector for an overcom-
plete dictionary. Analytic basis functions or beat patterns can
be obtained from the temporal and spectral characteristics
of ECG and noise for constructing the overcomplete mixed
dictionaries. The frequency-domain localized components
(like low-frequency components, baseline wander (BW) and
power line interference (PLI)) and time domain localized
spiked components (like muscle artifact and high frequency
(HF) components of QRS) can be effectively modeled using
sinusoidal waveforms and impulses respectively. Therefore,
the mixed dictionary can be constructed using time-localized
and frequency-localized elementary waveforms to capture
the additive components of the ECG signal and background
noises. In this work, the ECG signal is decomposed using the
predefined overcomplete mixed dictionary matrix with a size
of P ×Q as

Ψ = [ΨBW|ΨPT|ΨQRS|ΨSPK|ΨPLI], (1)

where, P is length of the ECG signal x and Q is the number
of elementary waveforms. ΨBW, ΨPT, ΨQRS, ΨSPK and
ΨPLI denote matrices of elementary waveforms to capture
BW, local P & T wave, LF components or wide portions of
QRS complexes, spiky components (HF component of QRS
and HF noises), powerline interference respectively. ΨBW ,
ΨPT , ΨQRS and ΨPLI contain elementary discrete sine and
cosine basis functions as

[S]kl =

√
2

P
[aksin(

π(2l + 1)(k + 1)

2P
)] (2)
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where, ak = 1/
√
2 for k = P − 1, otherwise ak = 1 and

k, l = 0, 1, 2, · · ·P − 1.

[C]kl =

√
2

P
[akcos(

π(2l + 1)k

2P
)] (3)

where, ak = 1/
√
2 for k = 0, otherwise ak = 1 and k, l =

0, 1, 2, · · ·P −1. Both sine and cosine waveforms are used to
avoid discontinuities at the block boundaries. The dictionary
matrix’s size and the number of iterations determine the com-
putational complexity of the algorithm [15]. The characteris-
tics of the signals can be used to learn the dictionaries for ap-
plications like feature parameter estimation, event detection,
compression, and denoising. In this work, our goal to subtract
the muscle artifact while preserving the shape of the signal.
Therefore, time-frequency information of ECG local waves
and different noise components helps to construct the mixed
dictionary. The dominant frequency of BW and PLI noises
lie between 0-0.8 Hz (upto 1 Hz during stress test) [14] and
57-63 Hz or 47-53 Hz respectively. On the other hand, most
of the energy of local P/T wave and QRS complex lie below
1-5 Hz and 5-20 Hz [16] respectively. Hence, sinusoidal dic-
tionary matrices ΨBW , ΨPT , ΨQRS and ΨPLI constitute
dominant frequency ranges 0-1 Hz, 1-2 Hz, 2-20 Hz and 57-
63 Hz respectively. If the frequency is f , the column number
will be b 2Af

fs
c (fs being sampling rate and P being length of

the signal). The sine and cosine waveforms in the dictionary
are calculated using (2) and (3) for required frequency ranges.

The sparse coefficients can be estimated by solving l1 -
norm convex optimization [17], [18].

α̂ = argmin.‖Ψα− x‖22+λ‖α‖1 (4)

λ is the regularization parameter. It adjusts relative weights
between reconstruction fidelity ‖Ψα− x‖22 and sparsity term
‖α‖1. The estimated sparse coefficients vector α̂ includes,

α̂ = [α̂BW |α̂PT |α̂QRS |α̂SPK |α̂PLI ] (5)

α̂BW , α̂PT , α̂QRS and α̂PLI are the coefficients cor-
responding to sinusoidal elementary waveform for ΨBW ,
ΨPT , ΨQRS and ΨPLI respectively. The ECG signal can be
represented as

x̂ ≈ Ψα̂ = [ΨBW |ΨPT |ΨQRS |ΨSPK |ΨPLI ]α̂ (6)
x̂ = ΨBW α̂BW + ΨPT α̂PT + ΨQRSα̂QRS

+ΨSPK α̂SPK + ΨPLI α̂PLI

The reconstructed ECG signal x̂ can be computed as x̂ ≈
x̂BW + x̂PT + x̂QRS+ x̂SPK+ x̂PL where, x̂BW , x̂PT , x̂QRS ,
x̂SPK and x̂PL are reconstructed BW signal, local P/T wave
signal, wide QRS complex, spiky events including HF noises
and HF QRS and PLI signal respectively. The effectiveness
of R-peak detection algorithm is illustrated in Fig. 1 for the
noisy ECG signal.

Algorithm 2 Proposed R peak detection algorithm
Function:Rpeak = RPeakDetector(xQRS ,x,Fs);
Input:
xQRS ← Reconstructed QRS signal
Fs← Sampling frequency
x← Input ECG signal
Output: Rpeak = location of R peaks
Procedure:
Step0: Initialization n= 0, 1, 2, . . . N − 1
Step1: Perform derivative and squaring operation
d=[0 diff(xQRS )]
d = d

max(|d|)
d = d2

Step2: Apply adaptive thresholding, d̄ = (|d)| > σd) ∗ d, σd denotes the
standard deviation of d.
Step3: Compute Shannon energy followed by smoothing to obtain envelope
See = -d̄. ∗ log(d̄)
s = filtfilt(b, a, See); b=ones(1,WS)/WS; and a=1; WS=floor(0.1*Fs)
Step4: Peak finding logic using Gaussian derivative operator
z = conv(s, h) //convolution of s and h;

h[k]=w[k] - w[k 1]; w = e
1
2

(2εl)
L

L is the window length, L=floor(2.5*Fs) for interval of 2.5 s;
ε=floor(0.05*Fs) for duration of 50 ms;
r=(sign(z[n]) > 0)&&(sign(z[n + 1]) < 0); // store locations of negative
zero-crossing points in z[n]
Step5: Perform peak adjustment procedure
nw=floor(0.05*Fs); //searching window size to find true R-peaks
for p=1 to length(r) do

[Rmax Rpeak]=max {x[r(p) nw : r(p) + nw]} //store current location of a
detected R-peak
endfor
EndProcedure
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Fig. 1. Illustrates the outputs of the proposed sparse decom-
position approach (a) Original ECG signal taken from a mit-
biha record 104 corrupted with MA (b) Addition of recon-
structed P/T wave x̂PT and wide QRS signal x̂QRS (c) Spiky
signal x̂SPK (QRS and muscle artifact) reconstructed from
identity basis (d) R-peak detection result on x̂QRS (e) De-
noised ECG signal

3. RESULTS AND DISCUSSION

In this section, the noise reduction performance of the pro-
posed method is tested and validated using ECG signals taken
from a standard MIT-BIH Arrhythmia database. The recon-
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Table 1. Performance evaluation of denoising methods using different objective quality metrics including root mean squared
error (RMSE), signal to noise ratio (SNR), maximum absolute error (MAX), normalized cross correlation (NCC) and wavelet
energy based diagnostic distortion (WEDD)

EMD [3] EMD+Wavelet[10] Proposed Method
Rec. RMSE SNR MAX NCC WEDD RMSE SNR MAX NCC WEDD RMSE SNR MAX NCC WEDD
100 0.07 8.80 0.59 0.938 37.23 0.07 8.57 0.62 0.934 37.04 0.04 13.21 0.41 0.979 18.22
101 0.06 11.17 0.46 0.967 27.90 0.06 10.81 0.52 0.963 28.14 0.03 16.48 0.20 0.992 13.29
102 0.05 11.44 0.31 0.967 26.72 0.05 11.06 0.39 0.963 27.18 0.03 15.48 0.22 0.986 14.51
104 0.06 12.42 0.54 0.971 26.32 0.06 11.27 0.61 0.963 22.56 0.03 16.44 0.48 0.989 14.36
106 0.07 12.13 0.87 0.969 29.78 0.07 12.10 0.85 0.969 29.68 0.04 17.63 0.20 0.993 10.72
107 0.12 16.59 0.73 0.989 13.50 0.12 16.41 0.73 0.988 13.52 0.06 22.03 0.48 0.997 6.04
109 0.10 12.46 0.58 0.970 27.22 0.10 12.45 0.58 0.970 21.32 0.03 22.08 0.20 0.997 6.92
111 0.06 9.92 0.44 0.948 36.20 0.09 11.09 1.00 0.948 32.89 0.03 14.68 0.21 0.984 16.23
117 0.04 14.38 0.26 0.981 35.63 0.04 14.38 0.25 0.981 35.82 0.03 15.22 0.18 0.985 17.44
118 0.05 9.57 0.61 0.943 39.76 0.05 9.60 0.60 0.944 39.64 0.03 14.24 0.20 0.982 19.25
119 0.09 13.16 0.90 0.974 22.76 0.09 13.19 0.89 0.974 22.49 0.05 19.38 0.48 0.996 9.19
123 0.11 8.56 1.10 0.927 39.59 0.11 8.60 1.06 0.928 38.72 0.04 17.73 0.18 0.994 11.02
124 0.08 13.64 0.71 0.974 20.33 0.08 13.62 0.73 0.974 20.34 0.04 18.89 0.45 0.994 12.05
203 0.09 13.60 0.57 0.978 24.40 0.09 13.58 0.58 0.978 24.28 0.04 19.77 0.37 0.995 8.24
207 0.04 14.45 0.34 0.980 23.48 0.04 14.44 0.34 0.980 23.47 0.04 15.83 0.27 0.987 14.02
208 0.09 13.54 0.76 0.978 17.04 0.09 13.40 0.80 0.978 17.25 0.05 18.28 0.64 0.993 11.27

Avg. 0.07 12.24 0.61 0.97 27.99 0.08 12.16 0.66 0.96 27.15 0.04 17.34 0.32 0.99 12.67

structed signals are assessed using both subjective quality as-
sessment test and objective quality assessment metrics includ-
ing the root mean square error (RMSE), signal to noise ratio
(SNR), normalized cross correlation (NCC), maximum abso-
lute error (MAX), and wavelet energy based diagnostic dis-
tortion (WEDD) [19]. In this work, the existing denoising
methods based on the EMD, DWT and EMD, high-pass filter
(HPF), and moving average filter (MAF) are implemented for
performance comparison. The noise reduction performance
of EMD, and DWT and EMD method is summarized in Ta-
ble 1. From the values of different objective quality metrics,
it is noted that the proposed method has lower values of the
RMSE, MAX and WEDD metrics and higher values of SNR,
NCC and WEDD metrics for most of tested ECG signals. The
original and reconstructed ECG signals are shown in Figs. 1
and 2 for visual inspection of morphological features of the
local waves of the ECG signal. It is evident from Fig. 2 that
proposed method outperforms other existing methods. Due
to the lack of space, the performance evaluation results are
presented in Table 1 and Figs. 1 and 2 for demonstrating the
noise reduction capability of the proposed denoising method.

4. CONCLUSION

This paper presents an automatic method for removal of mus-
cle artifacts from ECG signals using the sparse signal decom-
position and R-peak information. The noise reduction ca-
pability of the proposed method is tested and validated us-
ing ECG signals taken from a standard MIT-BIH Arrhyth-
mia database. The reconstructed signals are assessed using
both subjective quality assessment test and objective qual-
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Fig. 2. Results of the five denoising methods (a) Original
ECG taken from a mitbiha record 104 (b) HPF-based de-
noised signal [13], (c) MAF-based denoised signal [9], (d)
EMD based denoised signal [3], (e) EMD + wavelet based
denoised signal [10], (f) the proposed method.

ity assessment metrics. Performance evaluation results show
that the proposed method outperforms other existing ECG de-
noising methods in adequately removing the muscle artifacts
without significantly distorting the morphologies of P-wave,
QRS-complex and T-wave of the ECG signals.
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