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ABSTRACT ingly used, but requires identifying arrhythmogeneticaare

. . . . Sites with high dominant frequencies or complex fractiedat
Multi-channel intracardiac electrocardiograms (elegtams) electrograms have been proposed as candidates for ablation

are sequentially acquired, at the electrophysiology lafany, but the performance of these approaches is still unsatiisfac

in order to guide radio frequency catheter ablation during S | authors h . tinated the inf f |
heart surgery performed on patients with sustained atrial everal authors have investigated Ihe interence of causal-

fibrillation (AF). These electrograms are used by cardiolo'Y relationships among different biomedical signals [B, 7

gists to determine candidate areas for ablation (e.g.,sare<J;1n par_ﬂcular, causality dlscov_ery tools have been extagi
used in neurology [8]. In cardiology, on the one hand Granger

corresponding to high dominant frequencies or complex frac . . : . .
tionated electrograms). In this paper, we introduce a noveq"’lusallty has been used o investigate the relationshiyeiet

hierarchical algorithm for causality discovery among thes sheveral p*f‘ys'o'.o?'g?' tlmz serr:es [9, 10]. .On the other hand
multi-output sequentially acquired electrograms. Thesahu the use of partial directed coherence to investigate prbpag

model obtained provides important information about the'on patterns in Intra-cardiac signals was considered 1, [1

propagation of the electrical signals inside the heartpunc Wwhereas Granger causality maps were built in [12, 13]. How-

ering wavefronts and activation patterns that will serve tg°Ven all of these approaches are based on the standard full

increase our knowledge about AF and guide cardiologists tgZonditional approach to causality discovery.
In this paper, we propose a novelerarchical causal-

wards candidate areas for catheter ablation. Numericaltses Sl
on synthetic signals, generated using the FitzHugh-Nagum'(By approach for causality discovery among AF electrograms.

model, show the good performance of the proposed approacﬁhe algorithm initially selects the node with the highestnau
ber of potential causal links as the root node. The candidate

Index Terms— electrocardiography, atrial fibrillation, sons of the root node are then explored (starting by the slose

Granger causality node), accepting them as true sons only if they provide rele-
vant information conditioned on all previously acceptedsso
1. INTRODUCTION This process is repeated until there are no more nodes left to

process. The causality maps inferred contain important4inf
Atrial fibrillation (AF), which is a family of cardiac diseas  mation about the propagation of the electrical signalsiisi
characterized by a rapid and unsynchronized contraction dhe heart, allowing us to uncover wavefronts and activation
the atria, is the most common cardiac arrhythmia. Indeed, Apatterns that will serve to increase our knowledge about AF
has reached epidemic proportions [1], with one out of fourand guide cardiologists towards candidate areas for ahlati
people over 40 years old predicted to suffer from AF in the  The paper is organized as follows. Firstly, Section 2 in-
future [2]. However, its underlying mechanisms are still no troduces Granger causality, describing both the pairwisk a
fully understood, and several theories for the initiatiomd a conditional approaches. Then, Section 3 details the pezpos
maintenance of AF have been proposed [3, 4, 5]. One of theierarchical causality algorithm, Section 4 shows the mirme
leading hypotheses (rotor theory) states that specificsarea cal results, and Section 5 provides the conclusions.
the myocardium are responsible for AF initiation and mainte
nance. RF catheter ablation, where an RF catheter placed in-
side the heart is used to ablate the areas causing AF, igsicre 2. GRANGER CAUSALITY (G-CAUSALITY)
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during RF catheter ablation therapy. In the sequel, we de2.2. Conditional G-Causality

scribe two standard approaches for causality inference. o o L .
Pairwise causality is unable to discriminate between direc

causal relationships (i.e., between parents and sonshdid i
rect relationships (e.g., between grandparents and gndndc
In its standard (pairwise) formulation, Granger Causdmy dren). In order to avoid the undesired extra edges intratluce
causality) measures the increase in predictability onuheé by these indirect relationships, [16] proposed the useoof
outcome of a given signatk;,[n] with 1 < ¢ < Q, given the ditional G-causality Let us define ag the set containing the
past values of another signal;[n] with 1 < ¢ < @Q, w.r.t.  indexes of the conditioning variables. Now we can define the
the predictability achieved by taking into account onlytpas conditional self-predictoas

values ofz,[n] [14]. The linear autoregressive (AR) predictor

2.1. Standard Pairwise Causality

for z,[n] given its past samples (i.e., theth self-predicto) Eqzln] = afyxgIn] + > ol x, [, (5)
is given by rel

Mqq . whereot,., = [arg[l], ..., ang[Myg]]T andx,[n] = [z, [n —

qln] =Y agglmlagn —m] = alxg[n], (1) 1), ..., a.[n — M,]]T for all € Z, and theconditional

m=1 cross-predictorfrom the ¢-th signal (with?¢ ¢ 7) to theg-th

where M,, is the order of the predictor (obtained typ- outputas

ically using some penalization for model complexity to . - -

avoid overfitting [15]), a,,[m] are the coefficients of the Tyqzln] = ayyxq[n] + Zo‘rqxr[n] + oy xe[n].  (6)
model, otyy = [aggll], ..y @gq[My)]T, and x4n] = reT

[zgln — 1], ..., z4[n — My,]]". Similarly, let us define - . o

the linear AR predictor forz,[n] given the past samples of NOW‘ by defining the residual errors agr(n] = wq[n] —

i X . i . ) Zgiz[n] andey_,qz[n] = x4[n] — 2, 4z[n], the conditional
:i(g)gt:aﬁqtg)nghz?gr? g [ig}ngl.)e ésthecross predictorfrom the ¢-th G-causality strength can be defined as

Var(ggz[n])

Fomsafn] = oy [n] + ol il @ Ver(egrn))
Var(e g2l

GZ%q\I =1n (7)
where M, is the order of the predictor from thieth signal
to theg-th output (different from/,, in general) o, [m] its  Just like in the case of the pairwise causality, we may de-
coefficients, o, = [ovg[l], ..., ag[My)]" andxy[n] =  fine two conditional connection/strength G-causality fnatr
[ze[n — 1], ..., z¢[n — My]]T. Theresidual errorsof the  ces, Gz and Cz, whose(/, ¢)-th elements are respectively
two predictors in (1) and (2) arg[n] = z4[n] — Z4[n] and Gy gz = Goosgz aNdCy_syz = Hp(GHq\z)-z

€iq[n] = x4[n] — T q[n] respectively. Thepairwise G-
causalitystrength is then measured by the logarithm of the

- . i 3. HIERARCHICAL GRANGER CAUSALITY
ratio of these two variances [16]:

Var(eq[n]) On the one hand, pairwise G-causality may provide mislead-
n m' @) ing results, as it includes both direct and indirect causial-r
tionships. On the other hand, the “brute-force approach” to
conditional causality (i.e., applying conditional cautyabn
the whole data set all at once) is much more demanding from
G 04 g a computational point of view and may obscure some of the
GZ = {0 l—q> q;

Gy =1

Using these pairwise values, we can buildoairwise G-
causality strength matrixG, whose(/, ¢)-th entry i

(4) existing relationships. Hence, in this paper we proposem hi
archical approach that is able to exploit the advantagestof b

Finally, note that we should add a causality link from @pproaches while minimizing their drawbacks. The alganith

to ¢ only when the decrease in the residual's noise variStarts by searching for the node with the highest number of G-

ance from (1) to (2) is statistically significant. In order to causality links to the other nodes and selecting it as the roo

construct this causality graph, we may define gragrwise ~ node. Then, the sons of the root node are processed sequen-

G-causality connection matrixC, whose(/, ¢)-th element is  tially according to their proximity, adding new causalityks

Cisq = 1,(Go_,q), wherel,(-) is an indicator function such if they are significant conditioned on the previously added

t_ha_tHP(GZ?q)_ _: 1 Whe_n the causal _“nk frond to q1s sta- 2Note that the pairwise G-causality connection/strengthrioest are
tistically significant (as indicated by ifsvalue for example) unique, whereas many conditional G-causality connectierigth matri-

{=q.

and]lp(Ge_m) — (0 otherwise. ces can be constructed. The most usual situation in thetliterés setting
I=8,={1,...,¢0—-1,¢41,...,Q}={1, ..., Qt\ {¢{} and
INote that Vateq—q[n]) = Var(eq[n]), sincezq—q[n] = @4[n], so  constructing théull conditional G-causality connection/strength matrices as
Gy—q[n] = In1 = 0 and the definition in (4) is consistent with (3). Gy qls., = Grqls_, andCy_ s, =Ip(Gy_sqs_,) respectively.
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links. This process is repeated iteratively (on the grangso set of sons of the root node and the corresponding entry in the
of the root node and so on) until there are no more nodes toonditional G-causality connectivity/strength matricesip-
process and poly-treehas been constructed. The following dated. The motivation for this approach is that true soifls sti
two assumptions are made in building this poly-tree: provide statistically significant G-causality values aften-
. . . ditioning, whereas descendants further away along thdyami
1. No feedback links can exist from lower nodes to highetyee ¢o not provide statistically significant G-causaliajues
nodes in the hierarchy. (as they are masked by closer descendants of the root node).
2. The causal interaction is given by neighbouring nodes”S @ result, this stage sets the corresponding entries in the
strength/connection G-causality matric€s, ,;» andCy g p,
In the sequel, we describe the steps of the algorithm inldetaireturns the set of sons of the root node, = son{i; }, and
sets the root node as the parent for the nodes;jn i.e.,

3.1. Initialization: Selecting the Root Node Py = pafq} = {i1} Vg € S;,. The procedure applied is:

The initialization stage seeks to find the optimal root node 1- SetG;, qp = 0andC;, gp = 0forg =1, ..., Q.
for the causal graph. This is done by calculating the pagwis SetGyqp = NaNandC, 4» = NaNforl < /,q < @
G-causality among all nodes and selecting the one with the ~ With £ # ;.2

highest number of G-causality links to the other nodes. As a
result, this stage returns the root nodg, and the set of its
candidate sons;,; = cand{i; }. The detailed steps taken are:

2. Sort the elements iy, according to their proximity to
the root node, with the distance defined as:

1. SetG = 0 andC = 0. Initialize the sets of sons and d(ir, 7) = min{((ir = j))e. (G —ir))e},  Vj €Ci,

parents as empty set®, = pa{q} = 0 andS, = with ((k))o denoting the modulo operation, i.e., for
son{g} =0forg=1, ..., Q. any three integer numbers, k andQ, m = ((k))q <

2. FRg=1,...,Q—1landl=g+1, ..., Q: Calcu- fha:t @ o gher:iggdf are tgef’;"y integers such
late G, andG,_,4, and set the corresponding entries o > == '
in G andC. 3. SetC’iHcil(mp =1, Gilﬁcil(l)‘ﬂp = Gilﬁcil(l) and

3. Calculate the G-causality strength of theéh node Sia = sonfin} = {Ci, (1)}
(¢ = 1, ..., Q — 1) as the sum of the strength 4. FORj =2, ..., |C;, |
of its causal links to the remaining nodeg,
Z?:l Gy = ZZQZI G 4— ¢, and the number of links for
eachnode a&, = Y%, C, o = 329 T, (Gys).

(®) CalculateGiﬁczl(m&1 and CZ-HCH(J-)@1
L(Giysei, ()1si, )
(b) I F Oilﬁcil(jﬂgn = 1 SetCz-lﬁcil(Mp =1

4. Determine the node with the highest number of causal Gi, e, ()P = Giyses, () Sin = Si U{Ciy (7))
links stemming from it, andPe, (j) = pa{C;, (j)} = {i1 }-
iy = argmax K, ®) 3.3. Main Algorithm: Processing the Remaining Nodes

1<q<Q .
Iteratively

and set it as the root node, with) being used only to

discriminate among nodes with identical valuesiof This final stage is in charge of processing the remainingsroot

iteratively in a hierarchical fashion. The process desatib
5. Obtain the set of candidate sons of the root ndge= in the previous section is repeated iteratively, procestie
candi } = {¢: C;, =1} sons of each of the sons of the root node (i.e., the grandsons
of the root node), starting again by the closest one. The
algorithm proceeds in this way (i.e., processing the great-
grandsons of the root node, the great-great-grandsons of th
This stage is in charge of processing the set of candidate sofoot node and so on), until there are no more nodes to process.
of the root node, determining which of them are true sonsThis stage returns the full strength/connection G-catysali
This decision is taken by sorting the candidates according tmatrices G, 4» andC, ,p, defining a causal network with
their proximity to the root node, and processing them sequenthe corresponding sets of sons and parefifs- son{g} and
tially (with closer candidates being processed first). Athea P, = pa{q} forg =1, ..., Q. The steps taken are:
iteration, a conditional G-causality strength is calcethtis-
ing the current .Set of sons_ of t.he root node (I.nlt.la”y e_n_wpty) is obtained as the result of mathematically undefined op@&s(®g.0/0 or
If the G-causality connection is deemed statistically Bign ., _ ). we use it here as a convenient way to indicate entrieg pfand
cant (by means of itg-value), the candidate is added to the C» that have not been defined yet.

3.2. First Iteration: Processing the Sons of the Root Node

3NaN is the IEEE arithmetic representation for “Not-a-Number”,ioth
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Fig. 1. (left) True map and causality maps inferred (= 11, p = 0.01 and SNR = 30 dB)(center) Effect of changing the
p-value (M = 11 and SNR=30 dB)(right) Effect of changing the number of ladg (p = 0.01 and SNR=30 dB).

1 Sett=1,7;, = {1} andM, = {1, ..., Q} \ Z;. Fig. 1 (left) shows an example of the networks obtained
(usingM = 11, p = 0.01 and SNR = 30 dB). As expected,
2. WHILE M, # 0 the pairwise approach includes a huge number of edges, since
(@ FOREk =1, ..., [T|: it cannot distinguish direct and indirect causal relatiops.
The full conditional approach does a much better job, blit sti
provides too many cross-connections across the nodes. Fi-
nally, the hierarchical scheme includes less cross-cdiumsc

e SetS = Sz, () and sort its elements accord-
ing to their proximity to the current parent.

e FOR( =1, ..., [S]andj = 1, ..., [C]:  andhas alower computational cost. The effect of the differe
SetC = Cswy = M\ S(f), and cal-  faciors (the number of lagd/, and thep-value) is shown in
culate Gs(o)—c(j)iz, and Csy—c)iz. =  Fig. 1 (center and right), whereas Table 1 shows the effect of
L(Gs@-cyz.) VF Cs@—ciz = 1, changing the SNR.On the one hand, the pairwise technique
then set: provides very good results in terms of sensitivity (detegll

c o the edges), but very poor results in terms of specificityrdint
SO=CHIP = 5 ducing many false edges). On the other hand, the full condi-
Gswy—ci)p = Gs@y—»c) T tional scheme obtains very good results in terms of spewifici
son{S(¢)} =son{S(0)} U{C(y)}, but not so good sensitivity results. Finally, the hieracehap-
palC(j)} = pafC(j)} U {S(0)}. proach provides the best sensitivity results, performirgj w

also in terms of specificity and accuracy.
Table 1. Performance vs. SNRY = 11, p = 0.01)

(b) SetZ;,, = u}f;‘lszm, My = M\ Ty and Hierarchical Full Cond.
t=1t+1. SNR | Acc. | Sen. | Spe. | Acc. | Sen. | Spe.
10dB | 0.860| 0.516 | 0.903| 0.892| 0.380 | 0.956
4. NUMERICAL SIMULATIONS 15dB | 0.850| 0.591| 0.882| 0.889| 0.520| 0.935
20dB | 0.846| 0.681| 0.866| 0.886| 0.677 | 0.912

In this section, we validate the proposed approach by means

of synthetic signals, generated using a grid of intercotatec 5. CONCLUSIONS AND FUTURE LINES

elements running the FitzHugh-Nagumo model to simulate

the behaviour of heart tissue [17], and contaminated by-addin this paper, we have introduced a novel hierarchical ap-
tive white Gaussian noise (AWGN) at a given signal to noiseproach to infer Granger causality relationships amongimult
ratio (SNR). The Granger causal connectivity toolbox (seehannel intra-cardiac electrocardiograms. The proposed
[18]) was used to obtain the basic pairwise and conditionascheme avoids detecting indirect causal links (as in pair-
causality relationships. A flat propagation wavefront in-ge wise approaches), and has a similar performance and lower
erated and a catheter with 9 sensors is placed inside the gricomputational cost than the full conditional causality noet

wit_h the wavefront eqtering it through the eighth sensor gnd sFigures of merit used: accuracf £ ), sensitivity €£) and speci-
exiting through the third one. The three approaches desitrib ficity(%). P denotes the number of pt)];itive instances (i.I;, existinggdg

in the paper (pairV\_/ise Causal_it)’x full conditional Camnq N the number of negative instancésP the number of correctly detected
the novel hierarchical causality approach) are then agplie existing edges an@ N the number of correctly detected missing edges.
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