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ABSTRACT

Steady-state visual evoked potentials (SSVEP) are a class
of signals obtained from the electroencephalogram (EEG)
that are used in conjunction with brain-computer interfaces
(BCIs). Inducing SSVEP signals requires flickering lights as
stimuli, typically in the range of 5-45 Hz. However, due to
low signal-to-noise ratio (SNR), SSVEP signals generated in
certain frequency ranges can be difficult to detect. This paper
studies cyclostationary-based detection for SSVEPs, which
is a popular method for signal detection in low SNR envi-
ronments, but whose application in the context of BCI sys-
tems has received only limited attention in the BCI research
community. The results presented in the paper demonstrate
that cyclostationary-based detection of SSVEP using spec-
tral correlation density (SCD) performs as well as canonical
correlation analysis (CCA), which is the most widely used
method of SSVEP classification.

Index Terms— Brain computer interface, steady state vi-
sually evoked potential, detection, cyclostationarity, canoni-
cal correlation.

1. INTRODUCTION

A BCT uses signals from the brain to control an external de-
vice, such as moving a prosthetic limb or moving a computer
cursor on the screen. BCI systems date back to the 1970s
when the ability to communicate in Morse code using EEG
activity associated with eye movement was demonstrated [1].
Since then, research in the area of BCI systems evolved in two
main directions. The first has focused on the development of
assistive communication devices for patients with severe neu-
romuscular disorders (such as Amyotrophic Lateral Sclerosis,
for example) and are suffering from “locked in syndrome”.
More recently, other uses for BCI technology are being re-
searched including rehabilitation and consumer applications
such as neurogaming or virtual training environments. We
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note that SSVEP-based BCI systems are suitable for applica-
tions where users are able to control their gaze and respond to
visual stimuli.

There are multiple methods of obtaining brain activity for
driving a BCI system, with the most common being from
the EEG. Active BCIs, such as those that use sensory mo-
tor rhythms (SMRs), are controlled by spontaneous brain ac-
tivity. In contrast, passive BCIs, such as those that use the
P300 evoked potential or SSVEP, rely on sensory stimuli to
evoke the brain activity. SSVEP is produced by the brain in
response to oscillating or flickering visual stimuli. SSVEP
shows promise in the BCI context as they offer a relatively
high data rate and require no training for classification [2].

An important consideration when working with EEG sig-
nals is noise removal to enhance their SNR. Typically, this
is accomplished by averaging signals recorded from multi-
ple trials, and is most effective when noise is white and zero
mean, leading to improvements in SNR that increase with the
number of trials averaged. However, the time required to ob-
tain a sufficient number of trials for an acceptable SNR can
be prohibitive for some real-time BCI systems.

As an alternative to noise removal, methods for detect-
ing EEG signals with low SNR may also be pursued. This
approach is commonly used in modern wireless communi-
cation systems to detect active signals in low SNR environ-
ments, and uses cyclostationary properties of digitally modu-
lated signals for signal detection in spectrum sensing applica-
tions [3], for modulation classification [4], or for estimating
signal parameters [S]. Recently, the use of a cyclostationary-
based approach was reported for detection of concatenated
P300 evoked potentials [6]. This motivates the work pre-
sented in this paper, which studies cyclostationary-based de-
tection of SSVEP.

The paper is organized as follows. Section 2 provides an
overview of SSVEP and of the signal processing techniques
used for detection and classification, followed by deriva-
tion of the spectral correlation density (SCD) used in the
cyclostationary-based detection of SSVEP in Section 3. Data
collection and analysis of numerical results are presented in
Section 4. Section 5 concludes the paper with final remarks.
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2. STEADY-STATE VISUALLY EVOKED
POTENTIALS

SSVEP is a response to visual stimulation from 3.5 to 100 Hz
and can be observed in the EEG signal over the visual cor-
tex [7]. BCI systems using SSVEP generally include displays
with multiple target regions or icons, each with a distinct
flickering frequency. When the user focuses on a particular
target region or icon, an SSVEP is generated at harmonics of
the associated target flickering frequency. SSVEP is observed
at the first harmonic of the stimulus frequency f and often in
the second and third harmonics [8].

The BCI system examines the power spectra from EEG
channels over the visual cortex to detect the signal and clas-
sify the desired target. SSVEP signals are significantly larger
in lower frequency ranges with the largest signal appearing
around 15 Hz [9]. The meninges, skull, and scalp layers act
as a low pass filter [10] which is a major contributor to the
1/f characteristic of EEG and the weaker SSVEP signals at
higher frequencies. There are issues however with low fre-
quency (< 20 Hz) SSVEP-based BCIs. Low frequencies have
been reported to be visually irritating to the user, cause eye
fatigue, and are more likely to cause an epileptic seizure [11].
Therefore, an SSVEP-based BCI system above the flicker
fusion threshold has particular advantages. The flicker fusion
threshold is the lowest frequency at which a flicking light
is perceived to be steady state, and for the purpose of an
SSVEP BC(I this is approximately 40 Hz. High frequency
SSVEP-based BCI systems have been considered, but be-
cause the SSVEP signal is weaker at these frequencies these
systems have lower data rates, higher BCI illiteracy rates,
and reduced accuracy as compared to their low frequency
counterparts [12]. Unique modulation methods have been
proposed which utilize a higher carrier frequency in com-
bination with a lower modulating frequency, but the lower
frequency can still be observed by the user [13]. Thus, in
order for a high frequency SSVEP-based BCI system to be
successful, alternative detection methods must be explored.

Multiple methods for extracting and classifying SSVEP
signals from EEG have been considered. Generally non-
parametric methods such as the periodogram are used due
to their superior performance to parametric methods in the
presence of noise [14]. Further, canonical correlation analysis
(CCA) is often used to detect SSVEPs and has been demon-
strated to outperform techniques based on power spectral
density (PSD) analysis [15]. CCA relies on the SSVEP signal
being composed of a linear combination of the BCI stimulus
frequency harmonics. Using CCA, canonical variables, or
linear combinations of spatial harmonic frequencies, for two
signal arrays are found so that the correlation between the
two is maximized. In this case one signal array contains EEG
signals from channels of interest while the other contains a
set of template sinusoids at the stimulus harmonics. CCA
is performed multiple times, once for each BCI flickering
frequency; the largest correlation value is the hypothesized
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target [16]. One of the major benefits of using template sig-
nals is that training data is not required for classification.
Cyclostationary-based detection of SSVEP is similar to CCA
in that it also takes advantage of the SSVEP signal harmonics
and can be implemented without training data.

3. CYCLOSTATIONARY-BASED DETECTION OF
SSVEP

Cyclostationary-based detectors, also referred to as feature
detectors, exploit specific cyclic statistical properties of non-
stationary signals to identify specific features of the signals
such as, for example, carrier frequencies, symbol period [5],
or other periodic features [4] for digitally modulated commu-
nication signals. In addition, cyclostationary feature detec-
tors benefit from the stationary properties of additive noise,
which enables them to distinguish signals from noise at low
SNRs [17].

A non-stationary signal is said to be second-order cyclo-
stationary if its time-varying mean and autocorrelation func-
tions are both periodic with period 7', that is

() = B{a(t)} = B{a(t + 1)), 1)
R.(t,7) = E{z(t)x*(t +7)} (2)
=FE{z(t+T)z"(t+T+ 1)}

Because R, (t,7) is cyclic it can be expanded using a
Fourier series expression [17]

Ry(t,7) =Y Ry (r)e 7>, (3)

acA

Here, o is the cyclic frequency, A is the countable set of cyclic
frequencies, and R%(7) is the cyclic autocorrelation (CAC)
function with respect to «.. Using the definition of the inverse
Fourier transform the CAC can be expressed as

1 [T/2 ”
R(7) = lim — R, —IEmet gt 4

20 = g [ Retoe @
We note that for cyclostationary signals RS (7) is finite for
a = n/T and 0 otherwise. However, for stationary signals
R (1) is 0 except at o« = 0. If we assume that the EEG signal
is comprised of a linear combination of the periodic SSVEP
signal and non-periodic noise then the CAC is independent of
the amplitude of the additive noise assuming the noise is not
periodic.

z(t) = s(t) + n(t)
Ry (1) = RY(T) + Ry(7)
RZ(7) = RS (7), fora # 0 (5)

Using the CAC, the SCD can be determined as the Fourier
transform of the CAC
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Fig. 1. SCD for a 23 Hz SSVEP signal obtained from EEG
channel O2 and filtered using a 15-52 Hz bandpass filter.

The spectral correlation density is known by multiple other
names including cyclic spectral density and spectral correla-
tion function. An alternate way of considering the SCD is the
normalized correlation between two spectral components of
x(t) at frequencies (f + «/2) and (f — «/2) over the obser-
vation interval At. Thus, the SCD can also be expressed as

S (f)=lim lim

At—ocoT—o00T

tf+ X*(t = )dt. )

Considering an SSVEP produced by a visual stimulus
with frequency f,, we note that its SCD will have primary
peaks due to the first harmonic at the (£ f,0) and (0, +2f;)
pairs, and secondary peaks due solely to the second harmonic
will be found at(£+2f;,0) and (0,+4f;). Further, peaks at
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(£1.5fs,+f5), and (£0.5f5, £3 f5) result due to the correla-
tion of the first and second harmonics. Figure 1 illustrates this
aspect with examples of an SCD of a 23 Hz SSVEP signal
which has been filtered using a 15-52 Hz bandpass filter.

We note that, cyclostationary-based detection has a high
computational requirement due to the large number of com-
plex multiplications required, and that this problem is com-
pounded when the cyclic frequency is unknown. However, the
classification methodology used in our analysis required com-
putation for a finite set of frequencies and cyclic frequency,
thus minimizing computations.

4. DATA COLLECTION AND NUMERICAL
RESULTS

To study the performance of cyclostationary-based detection
of SSVEP, data was obtained from a single healthy male sub-
ject with corrected-to-normal vision. This subject was known
to have a strong SSVEP response which could be detected
with high accuracy using the CCA classification technique
described in [16], and the classification accuracies of the two
methods have been compared.

4.1. Data Collection Methodology

The subject was placed in a dark room approximately 60 cm
in front of an array of 8 x8 green LEDs which were placed at
eye level. The LEDs flickered as to produce a 50% duty cycle
square wave. The use of the square wave over a triangle or
sine wave as well as the duty cycle of the square wave was
selected in order to yield the strongest SSVEP response [18].

Five trials were conducted each with a different stimu-
lus frequency: 17 Hz, 19 Hz, 21 Hz, 23 Hz, and 25 Hz.
The duration of each trial was 20 seconds. A 32-channel
EEG was collected using the standard active-wet electrodes
10/20 electrode placement. Signals were amplified using a
gtec g.USBamp and sampled at 256 Hz, and O2 was utilized
for the analysis.

The data from the 20 second trials was segmented into
ten 2-second blocks. These data blocks were filtered using a
zero-phase 15-52 Hz bandpass FIR filter. The filter passband
was intentionally set such that it was 2 Hz below the lowest
frequency and 2 Hz above twice the highest frequency. The
SCD of the filtered 2 second data blocks was found using a
frequency resolution of 0.5 Hz and a cyclic frequency resolu-
tion of 0.25 Hz.

Similar to CCA, a rudimentary classification method was
employed that did not require training. For each fs € {17, 19,
21, 23, 25} the SCD for the 2 second block was evaluated at
the points (f, ) equal to: (fs,0), (0,2fs), (2fs,0), (0,4fs),
(1.5fs, fs), and (0.5f5,3fs). The value of f, corresponding
to the maximum of the 25 points evaluated was the assumed
frequency. Additional classification techniques were evalu-
ated, including 2-D correlation with template SCAs (similar
to the template signals used in CCA). However, classification
using the maximum point method described obtained optimal
results.
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Fig. 2. Comparison of classification accuracies for CCA and
cyclostationary-based detection for a single noise trial.

In addition to determining classification accuracy using
the signal collected, this analysis evaluated the impact of in-
creasing noise corrupting the desired signal. This was done
to determine the tolerance of cyclostationary-based detection
to additive noise as it is often used in low SNR environ-
ments. Prior to segmenting or filtering the signal, additive
white Gaussian noise (AWGN) was added to the signal such
to reduce the overall SNR. This was done in Matlab where
additional noise was added such that the ASNR ranged from
0 to —30 dB. This is noted because the SNR of the original
signal is unknown, thus the SNR of the signal with addi-
tional noise is also unknown. In order to obtain meaningful
results it was necessary to conduct multiple noise trials. As
expected, when larger amounts of noise were added to the
signal, ASNR > —15 dB, the results varied significantly
dependent on the realization of the added noise for that trial.
Therefore, each ASNR value was repeated 50 times with the
accuracy results of the individual noise trials averaged.

4.2. Numerical Results and Performance Analysis

Figure 2 shows the classification accuracies for a single noise
trial as a function of the ASNR. The results for each of the
5 stimulus frequencies are provided. Each point plotted in
Figure 2 is the average of the ten 2-second segments. The
mean of the 5 frequencies is also provided and for compar-
ative purposes the mean classification accuracy using CCA
is also plotted. CCA classification was computed using the
methodology described in [16].

As previously noted, the results in Figure 2 are somewhat
erratic at higher levels of additive noise. Figure 3 provides
the average of 50 noise trials. In this case each point plotted
represents the average of 500 2-second segments. Again the
mean accuracy using SCA and CCA are provided.

As shown in Figure 3, the classification accuracies SCD
and CCA detection methods are similar, with cyclostationary-
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Fig. 3. Comparison of classification accuracies for CCA and
cyclostationary-based detection averaged over 50 noise trials.

based detection slightly outperforming CCA at higher levels
of additive noise. The accuracies across all frequencies are
are close to 100% when there is no additive noise. This is
true for both SCD and CCA detection methods. Further, the
accuracies remain above 90% until after the SNR has been
reduced by 10dB. After the SNR has been reduced by 15 dB,
the accuracy drops quickly below values acceptable for a BCI
system, and we note that the two methods (SCD and CCA)
have comparable performance when large amounts of noise
have been added.

5. CONCLUSION

In this paper we studied the cyclostationary-based detection
of SSVEP and presented numerical results comparing cor-
responding classification accuracy to that of CCA detection.
The results are intended to assess the feasibility of the studied
method, and show that cyclostationary-based detection can be
successfully used for SSVEP detection and classification.

Further investigation should include multiple subjects as
there is variability between the SSVEP characteristics across
subjects. Additional studies should also consider analyzing
noisy data collected with inexpensive EEG equipment rather
than adding artificial noise to data collected with research
grade equipment, as well as testing higher stimulus frequen-
cies to further evaluate the SNR performance.
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