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ABSTRACT
This paper presents a novel method of favorite music classification
using EEG-based optimal audio features. To select audio features
related to user’s music preference, our method utilizes a relationship
between EEG features obtained from the user’s EEG signals dur-
ing listening to music and their corresponding audio features since
EEG signals of human reflect his/her music preference. Specifi-
cally, cross-loadings, whose components denote the degree of the
relationship, are calculated based on Kernel Discriminative Local-
ity Preserving Canonical Correlation Analysis (KDLPCCA) which
is newly derived in the proposed method. In contrast with standard
CCA, KDLPCCA can consider (1) non-linear correlation, (2) class
information and (3) local structures of input EEG and audio fea-
tures, simultaneously. Therefore, KDLPCCA-based cross-loadings
can reflect best correlation between the user’s EEG and correspond-
ing audio signals. Then an optimal set of audio features related to
his/her music preference can be obtained by employing the cross-
loadings as novel criteria for feature selection. Consequently, our
method realizes favorite music classification successfully by using
the EEG-based optimal audio features.

Index Terms— electroencephalogram (EEG), canonical corre-
lation analysis (CCA), kernel method, music classification.

1. INTRODUCTION
In the field of music information retrieval, many recommendation
methods have been researched in order to provide musical pieces
desired by users [1–9]. Particularly, the recommendation methods
based on affective phenomena of humans such as [7–9] have been re-
searched in recent years since those of humans are closely related to
individual music preference. Specifically, these methods model hu-
man feeling by using audio features to understand human emotions,
and effective music recommendation is realized by favorite music
classification based on the models. However, audio features, which
are not related to user’s music preference, used in such method may
deteriorate the performance of favorite music classification. Further-
more, it is difficult to find a set of audio features related to each
user’s music preference adaptively since their music preference is
diverse [10, 11]. Therefore, it is necessary to introduce a new idea
such as solving the problem by using alternative features.

Recently, it has become obvious that electroencephalogram
(EEG) features extracted from EEG signals of a human who lis-
tens to music have a close relationship to his/her music prefer-
ence [12–18]. For example, Hadjidimitriou et al. reported discrimi-
nation between user’s EEG signals depending on music preference,
i.e., whether the user listened to favorite or unfavorite musical
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pieces [17, 18]. Furthermore, observation of EEG signals has be-
come easier, and the quality of observed signals has become better
due to the development and miniaturization of an EEG sensor. For
instance, the music inspiration from your subconsciousness (mico)1,
which is a headphone with an embedded EEG sensor, produced by
neurowear2, can easily provide EEG signals from the user when the
headphone is used like standard ones. Therefore, we consider that
EEG features obtained from the user’s EEG signals during listening
to music is utilizable and important to find a set of audio features
related to user’s music preference. However, so far, such research
has not been studied adequately as far as we know.

Motivated by the aforementioned discussion, we have proposed
favorite music classification using audio features selected by moni-
toring the relationship between EEG and audio features [19]. Specif-
ically, we employed Canonical Correlation Analysis (CCA) [20] to
obtain the relationship between EEG features of a user during listen-
ing to music and corresponding audio features. However, CCA may
be insufficient for extraction of the relationship since CCA extracts
only linear correlation, i.e., the relationship may contain not only
linear but also non-linear correlation. In fact, Li et al. reported that
extracting non-linear correlation between EEG and other features is
important to analyze a relationship between brain states and assigned
tasks accurately [21]. Furthermore, although training features gen-
erally have class labels, CCA cannot consider those since CCA is an
unsupervised method.

In this paper, we propose a novel method of favorite music
classification using EEG-based optimal audio features selected via
novel CCA. Our method firstly obtains EEG and audio features, and
next selects a set of audio features related to user’s music preference.
To select the audio features, we utilize a relationship between EEG
features obtained from the user’s EEG signals during listening to
favorite/unfavorite music and their corresponding audio features.
Specifically, cross-loadings [22], whose components denote the
degree of the relationship, are calculated based on Kernel Dis-
criminative Locality Preserving CCA (KDLPCCA) which is newly
derived in the proposed method. In contrast with standard CCA,
KDLPCCA can consider non-linear correlation by using the kernel
method, class information denoting whether input training samples
are obtained from favorite or unfavorite music and local structures
of input data. Thus, an optimal selection of audio features which are
suitable for individual music preference can be expected by employ-
ing the KDLPCCA-based cross-loadings as criteria. Consequently,
we train a Support Vector Machine (SVM) [23] classifier using the
selected audio features, and successful classification of the user’s
favorite musical pieces becomes feasible.

1http://www.neurowear.com/projects detail/mico.html
2http://www.neurowear.com
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Table 1. EEG features calculated by the proposed method: C de-
notes the number of channels of EEG signals and CP represents the
number of symmetric electrode pairs placed on the scalp.

DESCRIPTION DIMENSION
Zero Crossing Rate C

θ wave (4-7 Hz) C
slow-α wave (7-10 Hz) C
fast-α wave (10-13 Hz) C

Content Percentage of α wave (7-13 Hz) C
The Power Spectrum slow-β wave (13-19 Hz) C

fast-β wave (19-30 Hz) C
β wave (13-30 Hz) C
γ wave (30-49 Hz) C
θ wave (4-7 Hz) 2CP

slow-α wave (7-10 Hz) 2CP

fast-α wave (10-13 Hz) 2CP

Power Spectrum of α wave (7-13 Hz) 2CP

The Hemispheric Asymmetry [15] slow-β wave (13-19 Hz) 2CP

fast-β wave (19-30 Hz) 2CP

β wave (13-30 Hz) 2CP

γ wave (30-49 Hz) 2CP

Mean Frequency C
Mean Frequency of γ wave C

Spectral Entropy C
Spectral Entropy of γ wave C

TOTAL 13C + 16CP

2. FAVORITE MUSIC CLASSIFICATION USING
EEG-BASED OPTIMAL AUDIO FEATURES

In this section, we explain favorite music classification using EEG-
based optimal audio features. In our method, we first extract user’s
EEG features from EEG signals recorded while the user listens
to musical pieces and audio features from corresponding musical
pieces. Then we apply our novel CCA, i.e., KDLPCCA to obtained
EEG and audio features in order to extract the relationship between
them. Next, we select a set of audio features related to user’s music
preference by monitoring KDLPCCA-based novel criteria, called
cross-loadings [22], whose components denotes the degree of rela-
tionship between canonical variates of EEG and each original audio
feature. KDLPCCA has three superiority to CCA: 1) the kernel
method is employed to solve the linearly inseparable problem; 2)
more discriminative variates can be extracted by considering the
class information, i.e., whether each feature vector is obtained from
favorite or unfavorite music; 3) consideration of local structures is
employed so that KDLPCCA can capture the intrinsic data structures
of EEG and audio, globally. Thus, KDLPCCA-based cross-loadings
are expected to be effective criteria for selection of audio features
that are suitable for the user’s music preference. Then favorite music
classification based on SVM [23] using EEG-based optimal audio
features is conducted. Note that our method does not need to use
SVM invariably. In this paper, we experimentally employ SVM as a
classifier since it is broadly used in some studies.

2.1. EEG-based Audio Feature Selection via KDLPCCA
In this subsection, we describe an EEG-based selection of audio
features related to user’s music preference using KDLPCCA-based
cross-loadings.

First, we obtain two sets of N feature vectors XE = [xE
1 , x

E
2 , · · · ,

xE
N] ∈ RdE×N and XA = [xA

1 , x
A
2 , · · · , xA

N] ∈ RdA×N from EEG and au-
dio signals, where dE and dA are the dimensions of the EEG and the
audio feature vector, respectively. Note that the sets of EEG and au-
dio features, used in this paper, were acquired in an authors’ previous
work [24] and summarized in Tables 1 and 2. Since the space of the
paper is limited, the details of calculation of EEG and audio feature
are given there. Each obtained feature vector has a label represent-
ing whether it is obtained from “Favorite” or “Unfavorite” musical
pieces.

Table 2. Audio features used in the proposed method.
CATEGORY DESCRIPTION STATISTICS DIMENSION

dynamics Root Means Square Mean, Std 2
spectral Centroid Mean, Std 2

Brightness Mean, Std 2
Spread Mean, Std 2

Skewness Mean, Std 2
Kurtosis Mean, Std 2
Rolloff Mean, Std 4
Entropy Mean, Std 2
Flatness Mean, Std 2

Roughness Mean, Std 2
Irregularity Mean, Std 2

timbre Zero Crossing Rate Mean, Std 2
MFCC Mean, Std 26

Low Energy Mean, Std 2
tonal Key Strength Mean, Std 48

Chromagram Mean, Std 24
Key Mean, Std 2

Tonal Centroid Mean, Std 12
Mode Mean, Std 2

rhythm Tempo Mean 1
Pulse Clarity Mean, Std 2
Event Density Mean, Std 2
Attack Time Mean, Std 2
Attack Slope Mean, Std 2

TOTAL 151

2.1.1. Applying KDLPCCA
We firstly apply non-linear mapping to obtained feature vectors.
Note that the dimension of audio feature vector needs to be pre-
served in order to apply the following feature selection. Hence,
feature vectors of only EEG set, i.e., xE

j ( j = 1, 2, · · · ,N), are
transformed into Hilbert space via non-linear maps ϕE : xE 7→
ϕE(xE) ∈ RdϕE . From the aforementioned mapped results, we ob-
tain ΦE = [ϕE(xE

1 ), ϕE(xE
2 ), · · · , ϕE(xE

N)] ∈ RdϕE ×N . Then we apply
Discriminative Locality Preserving CCA (DLPCCA) [25] to XA

and ΦE . Specifically, we seek to maximize the following objective
function by using the projections uE

ϕ ∈ RdϕE and uA ∈ RdA :

(ûE
ϕ , û

A) = arg max
uE
ϕ ,u

A

uE
ϕ

T(Cw − ζCb)uA√
uE
ϕ

TCE
ϕuE
ϕ

√
uATCAuA

, (1)

where ζ is a tunable parameter and

Cw = Φ
E H(SE

ϕ ◦ SA)HXAT
, Cb = Φ

E H(S̄E
ϕ ◦ S̄A)HXAT

, (2)

CE
ϕ = Φ

E H(LE
ϕ + L̄E

ϕ )HΦE T
, CA = XA H(LA + L̄A)HXAT

, (3)

where the symbol ◦ denotes the Hadamard product. Furthermore,
H = I − 1

N 11T is a centering matrix, I ∈ RN×N is an N × N iden-
tity matrix, and 1 = [1, · · · , 1]T ∈ RN is an N-dimensional vector.
In Eq. (1), Cw ∈ RdϕE ×dA and Cb ∈ RdϕE ×dA , defined as shown in
Eq. (2), are respectively the within-class covariance matrix and the
between-class covariance matrix, which they are derived by consid-
ering the class similarity matrices SE

ϕ = {S
ϕE
i j }Ni, j=1, S̄E

ϕ = {S̄
ϕE
i j }Ni, j=1,

SA = {S A
i j}Ni, j=1 and S̄A = {S̄ A

i j}Ni, j=1 defined as follows:

S ϕE
i j =

{
exp(−δϕE

i j /tϕE ), label(ϕE(xE
i )) = label(ϕE(xE

j ))
0, otherwise

(4)

S̄ ϕE
i j =

{
exp(−δϕE

i j /tϕE ), label(ϕE(xE
i )) , label(ϕE(xE

j ))
0, otherwise

(5)

S A
i j =

{
exp(−δA

i j/tA), label(xA
i ) = label(xA

j )
0, otherwise (6)

S̄ A
i j =

{
exp(−δA

i j/tA), label(xA
i ) , label(xA

j )
0, otherwise (7)

where δϕE
i j = ∥ϕE(xE

i ) − ϕE(xE
j )∥2, tϕE =

1
N(N−1)

∑N
i=1
∑N

j=1 δ
ϕE
i j , δA

i j =

∥xA
i − xA

j ∥2 and tA =
1

N(N−1)

∑N
i=1
∑N

j=1 δ
A
i j. Furthermore, “label(•)” is
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the •’s class label. By using these class similarity matrices, we can
also derive Laplacian matrices LE

ϕ ∈ RN×N , L̄E
ϕ ∈ RN×N , LA ∈ RN×N

and L̄A ∈ RN×N defined in Eq. (3) as follows:

LE
ϕ = DE

ϕ − SE
ϕ ◦ SE

ϕ , L̄E
ϕ = D̄E

ϕ − S̄E
ϕ ◦ S̄E

ϕ , (8)

LA = DA − SA ◦ SA, L̄A = D̄A − S̄A ◦ S̄A, (9)

where DE
ϕ = diag[

∑
i(S
ϕE
1i )2,

∑
i(S
ϕE
2i )2, · · · ,∑i(S

ϕE
Ni )2], D̄E

ϕ = diag[∑
i(S̄
ϕE
1i )2,

∑
i(S̄
ϕE
2i )2, · · · ,∑i(S̄

ϕE
Ni )2], DA = diag[

∑
i(S A

1i)
2,
∑

i(S A
2i)

2,
· · · ,∑i(S A

Ni)
2] and D̄A = diag[

∑
i(S̄ A

1i)
2,
∑

i(S̄ A
2i)

2, · · · ,∑i(S̄ A
Ni)

2].
Solving Eq. (1) corresponds to the maximization of the correlation
considering the class information and the local structures of input
training sets of EEG and audio features.

However, finding uE
ϕ in Eq. (1) is generally difficult since the

dimension of Hilbert space’s vector, i.e., dϕE is very high. Therefore,
we employ the kernel trick which is denoted as the kernel function
kE(xE

i , x
E
j ) = ϕE(xE

i )TϕE(xE
j ), and we can thus rewrite the objec-

tive function of Eq. (1) by assuming uE
ϕ = Φ

E Hα based on dual
representation [26, 27] as follows:

uE
ϕ

T(Cw − ζCb)uA√
uE
ϕ

TCE
ϕuE
ϕ

√
uATCAuA

=
uE
ϕ

T[ΦE(SE
ϕ ◦ SA)XAT − ζ{ΦE(S̄E

ϕ ◦ S̄A)XAT}]uA√
αTC̃E

ϕα
√

uATCAuA

=
αT KE{(SE

ϕ ◦ SA) − ζ(S̄E
ϕ ◦ S̄A)}XATuA√

αTC̃E
ϕα
√

uATCAuA
, (10)

where

C̃E
ϕ = HKE H(LE

ϕ + L̄E
ϕ )HKE H + ξHKE H, (11)

and α ∈ RN is a coefficient vector. Furthermore, KE = ΦE T
ΦE ∈

RN×N is gram matrix whose (i, j)th component is kE(xE
i , x

E
j ), and ξ

is a regularization parameter. Then δϕE
i j in Eqs. (4) and (5) becomes

calculable as δϕE
i j = ∥ϕE(xE

i ) − ϕE(xE
j )∥2 = (KE)ii − 2(KE)i j + (KE) j j,

where (KE)i j denotes the (i, j)th component of KE . Consequently,
we can obtain α and uA as the optimal solutions by solving the fol-
lowing Lagrange function:

L(α, uA) = αT KE{(SE
ϕ ◦ SA) − ζ(S̄E

ϕ ◦ S̄A)}XATuA

− λE

2
(αTC̃E

ϕα − 1) − λA

2
(uATCAuA − 1), (12)

where λE = λA, and they are equivalent to the optimal solution of
Eq. (1).

In this way, we can obtain α and uA which can optimally reflect
the user’s music preference with preserving the local structures and
considering the class information in a subspace by solving Eq. (12).

2.1.2. Feature Selection Using KDLPCCA-based cross-loadings
In order to select audio features considering the relationship between
EEG and audio features, class information and local structures of
those features, we newly derive KDLPCCA-based cross-loadings
r ∈ RdA based on Eq. (10) defined as follows:

r = XA{(SE
ϕ ◦ SA) − ζ(S̄E

ϕ ◦ S̄A)}KEα. (13)

Cross-loadings can measure how well a feature loads on the canoni-
cal variate from the opposing feature set instead of its own. Specif-
ically, an ith component ri of r denotes the degree of relevance be-
tween KDLPCCA-based canonical variates of EEG and correspond-
ing ith original audio feature. Thus, we employ these cross-loadings

Table 3. The details of music dataset used in the experiment.
Number of Number of

TOTAL
FAVORITE music UNFAVORITE music

Subject A 23 23 46
Subject B 23 23 46
Subject C 17 17 34
Subject D 20 20 40
Subject E 16 16 32

Silence 

[10 sec] 

Silence 

[3 sec] 
Excerpt of Musical Piece 

[15 sec] 

End Tone 

[0.5 sec] 

 Trial 1   Rating Trial 2   Rating Trial #   Rating Trial 60   Rating  

Fig. 1. The task which we required each subject in the experiment.

as novel criteria to select audio features related to the user’s music
preference. Specifically, we select audio features according to the
value of the cross-loadings in descending order.

In this way, selection of audio features which are optimally suit-
able for individual music preference is realized since the KDLPCCA-
based canonical variates used for calculation of cross-loadings re-
flect the best correlation between the user’s EEG and audio features
with the class information and the local structures as explained in
the previous subsection.

2.2. Favorite Music Classification
In this subsection, we explain favorite music classification using the
EEG-based optimal audio features explained in the previous subsec-
tion. In our method, we classify an unknown label of an EEG-based
optimal audio feature vector xAtest by using the following hyperplane:

f (xAtest ) = sgn (⟨w, xAtest ⟩ + b). (14)

Given training music databaseD = {(xAtrain
l , yl)}Ntrain

l=1 , w and b can be
obtained by solving the SVM formulation [23] as follows:

min
w

1
2

wTw +C
Ntrain∑
l=1

ηl, (15)

s.t. yl(⟨w, xAtest
l ⟩ + b) + ηl ≥ 1, ηl ≥ 0, ∀(xAtrain

l , yl) ∈ D,

where xAtrain
l is obtained from the lth piece of music database, ηl is

a slack variable, and yl ∈ {+1,−1} denotes a correct class label, i.e.,
“Favorite” or “Unfavorite”.

In this way, we realize effective classification of favorite musical
pieces for each user adaptively since audio features used for SVM
are selected based on our novel criteria which are optimally suitable
for his/her music preference.

3. EXPERIMENTAL RESULTS
In this section, we show experimental results to verify the effective-
ness of the proposed method. First, we explain music dataset for
observation of EEG signals. In our experiment, we used 60 musi-
cal pieces3, each of which has 15 sec length. Furthermore, all sub-
jects rated each musical piece by a value of 5 levels, i.e., 5 (very fa-
vorite), 4 (favorite), 3 (undecided), 2 (unfavorite) and 1 (unfavorite at
all). Therefore, audio feature vectors could be grouped with respect
to two classes, i.e., “Favorite” and “Unfavorite”. Class “Favorite”
consisted of the audio feature vectors corresponding to the musical
pieces rated 5 or 4 by a subject. On the other hand, class “Unfa-
vorite” consisted of the audio feature vectors corresponding to the

3The database has 12 genres: Pops, Rock, Jazz, Latin, Classic, March,
etc. We use 5 musical pieces for each genre, i.e., the total number of musical
pieces used in our experiment is 60.
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(f) Average for all subjects

KDLPCCA (proposed) KLDCCA [29] KCCA [30] CCA [20] mRMR [31] Non-selected

Fig. 2. Results of favorite music classification: The horizontal axis denotes the number of nearest neighbors (= k) for considering class labels.
Meanwhile, the vertical axis denotes Accuracy. Note that the methods except for KLDCCA do not need to set the parameter k, i.e., not depend
on k. The methods except Non-selected varied the dimension of audio feature selection and presented the best results regarding each subject.

musical pieces rated 2 or 1 by a subject. Note that we did not use
the musical pieces rated 3. Furthermore, we equalized the number of
musical pieces of each class per subject by excluding some musical
pieces randomly to prevent imbalance problem [28–30]. The details
of the aforementioned music dataset are summarized in Table 3, and
the task implemented for each subject in our experiment is shown in
Fig. 1. These conditions were adopted in related studies [17, 18].

Next, we describe how to collect EEG signals in our experiment.
EEG signals were collected from five healthy subjects, and their av-
erage age was about 23 years. We recorded EEG signals from 12
channels (Fp1, Fp2, F7, F8, C3, C4, P3, P4, O1, O2, T3 and T4) de-
cided based on [17, 31] according to the international 10-20 system.
Since EEG signals are weak, we amplified the signals by utilizing
an amplifier (MEG-6116M, NIHON KOHDEN). All leads were ref-
erenced to linked earlobes, and a ground electrode was located on
the forehead. We also applied a band-pass filter to recorded EEG
signals in order to avoid artifacts, and we set the filter bandwidth to
0.04-100 Hz. The subjects were instructed to keep their eyes closed
and to relax and remain seated during listening to music.

Furthermore, we explain the experimental conditions. In our ex-
periment, we adopted the Gaussian kernel kE(xE

i , x
E
j ) = exp−∥x

E
i −xE

j ∥
2/2σ2

for KDLPCCA, where the kernel width σ2 was chosen by searching
the following parameter space: σ2 ∈ [2−15, 2−12, 2−9, 2−6, 2−3, 20, 23].
In addition, we respectively searched the following spaces to ob-
tain the optimal parameters ζ in Eq. (10) and ξ in Eq. (11):
ζ ∈ [0.01, 0.2, 0.5, 1.0] and ξ ∈ [10−3, 10−2, 10−1, 100]. Moreover,
we divided all of the training sets of audio feature vectors per mu-
sical piece in order to prevent overfitting caused by learning similar
vectors extracted from the same musical piece. Thus, we classified
the audio feature vectors per each musical piece, and calculated
classification accuracy.

Results of our experiment are shown in Fig. 2. In this figure, we

also show the results of five comparative methods: methods using
audio features selected via (1) Kernel Local Discrimination CCA
(KLDCCA) [32], (2) Kernel CCA (KCCA) [33], (3) CCA, (4) the
Max-Relevance and Min-Redundancy (mRMR) algorithm [34], and
(5) method using non-selected audio features. This is because CCA
and KCCA are benchmarks, and KLDCCA which can consider non-
linear correlation and k-nearest neighbors’ class information of in-
put data is state-of-the-art CCA. Furthermore, (4) the mRMR algo-
rithm is well-known and widely used non-CCA-based feature selec-
tion algorithm. Note that we adopted linear kernels for all SVMs
experimentally, and parameters used in SVMs were determined via
Grid Search [35]. As shown in Figs. 2(a)-(e), it is confirmed that
KLDCCA-based comparative method outperforms the other meth-
ods, but it severely depends on the parameter k. Generally, it is diffi-
cult for KLDCCA to decide the optimal value of k according to each
subject adaptively since the optimal k is different per each subject as
shown in Figs. 2(a)-(e). Meanwhile, our method, i.e., KDLPCCA-
based method does not depend on k. Nonetheless, the performance
of our method is relatively high as shown in Figs. 2(a)-(e). In addi-
tion, our method’s average accuracy for all subjects outperforms all
other methods as shown in Fig. 2(f). Therefore, our method realizes
robust favorite music classification successfully.

4. CONCLUSIONS
In this paper, we proposed novel favorite music classification us-
ing EEG-based optimal audio features selected via KDLPCCA.
KDLPCCA realizes the extraction of non-linear correlation with
preserving the local structures of input EEG and audio features and
considering the class labels. Hence, we can select an optimal set
of audio features which is suitable for individual music preference
by employing the KDLPCCA-based cross-loadings. Consequently,
successful favorite music classification is realized by using the
selected audio features.
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