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ABSTRACT

The EEG of epileptic patients often contains sharp waveforms
called “spikes”, occurring between seizures. Detecting such
spikes is crucial for diagnosing epilepsy. In this paper, we
develop a convolutional neural network (CNN) for detect-
ing spikes in EEG of epileptic patients in an automated fash-
ion. The CNN has a convolutional architecture with filters of
various sizes applied to the input layer, leaky ReLUs as acti-
vation functions, and a sigmoid output layer. Balanced mini-
batches were applied to handle the imbalance in the data set.
Leave-one-patient-out cross-validation was carried out to test
the CNN and benchmark models on EEG data of five epilepsy
patients. We achieved 0.947 AUC for the CNN, while the best
performing benchmark model, Support Vector Machines with
Gaussian kernel, achieved an AUC of 0.912.

Index Terms— Epilepsy, Spike detection, EEG, Deep
learning, Convolutional neural network

1. INTRODUCTION

Epilepsy refers to a group of chronic brain disorders charac-
terized by recurrent seizures, affecting approximately 65 mil-
lion people worldwide [1]. Electroencephalography (EEG) is
the primary diagnostic test for epilepsy, which provides a con-
tinuous measure of cortical function with excellent temporal
resolution. Significant efforts are spent on interpreting EEG
data for clinical purposes. In current clinical practice, visual
inspection and manual annotation are still the gold standard
for interpreting EEG, which is tedious and ultimately subjec-
tive. In addition, experienced electroencephalographers are in
short supply [2]. As a result, a great need exists for automated
systems for EEG interpretation.

The finding of primary importance for the diagnosis for
epilepsy is the presence of interictal discharges, also known
as “spikes” and “sharp waves”, hereafter referred to col-
lectively simply as “spike(s)”. Automated spike detection
would enable wider availability of EEG diagnostics and more
rapid referral to qualified physicians who can provide further
medical investigation and interventions. However, spikes are
difficult to detect in a consistent manner due to the large

variability of spike waveforms between patients among other
factors [3]. Great attempts have been made to detect spikes
by general classifications such as mimetic, linear predictive,
and template based methods [4]. Many recent spike detection
algorithms combine multiple methodologies, such as local
context [5, 6, 7], morphology [8, 6, 7, 9, 10, 11], field of
spike [8, 7, 12, 11, 13], artifact rejection [8, 6, 7], and tem-
poral and spatial contexts [8, 13, 14]. Unfortunately, none
of them are universally accepted or tested on a significantly
large dataset of patients and spikes. To date, no algorithmic
approach has overcome these challenges to yield expert-level
detection of spikes [3].

In this study, we analyze the scalp EEG recordings of five
patients diagnosed with epilepsy. Suspected interictal epilep-
tiform spikes were cross-annotated by two neurologists. We
applied convolutional neural networks (CNNs) to learn the
discriminative features of spikes. CNNs are statistical mod-
els incorporating prior knowledge about the discriminative
features of spikes. CNNs are commonly applied for finding
local pixel dependencies [15]. Furthermore, CNNs have been
proven successful in surpassing human accuracy in image
recognition tasks [16], time-series tasks for text analysis [17]
and biological sequences [18]. In addition, CNNs possess
much fewer connections compared to a fully-connected neu-
ral network, due to the sparsity and the parameter sharing
across the filters. Nevertheless, the computational complexity
remains a key challenge to implementing CNNs. To address
this issue, we utilize Graphical Processing Units (GPUs) and
high performance libraries for modeling CNNs.

We benchmarked the CNN approach with several stan-
dard classification methods. Leave-one-patient-out cross-
validation was conducted to generate the receiver operating
characteristic (ROC) curve for each model, with the average
area-under-the-curve (AUC) as the benchmark criterion. We
achieved 0.947 AUC for the CNN, while the best performing
benchmark model, Support Vector Machines with Gaussian
kernel, achieved an AUC of 0.912.

This paper is organized as follows. In Section 2, we pro-
vide information on the EEG data considered in this study.
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We also elaborate on the design of the CNN model. In Section
3, we provide results for the CNN approach and four standard
classifiers. In Section 4, we offer concluding remarks and
ideas for future research.

2. METHODS

2.1. Epileptiform EEG

We analyzed the scalp EEG recordings of five patients with
known epilepsy. Each EEG data lasts 30 minutes recorded
from 19 standard 10-20 scalp electrodes. The sampling rate is
128Hz. A high-pass filter at 1Hz was applied to remove the
baseline drifts. A notch filter centered at 60Hz was applied to
remove the power line interference. The common average ref-
erencing montage was applied to remove the common EKG
artifacts.

As shown in Fig. 1a, interictal epileptiform spikes are
morphologically defined events with an outstanding sharp
peak distinguishable from the background fluctuations (see
Fig.1b). Spikes were cross-annotated independently by two
neurologists, and extracted with a fixed duration of 0.5 s. In
order to reduce the computational load, we randomly sam-
pled 1,500 spikes and 150,000 background waveforms from
each subject. Leave-one-patient-out cross-validation was con-
ducted to evaluate the CNN model. Moreover, 10% of the
training data was further extracted under stratified sampling
for validation, in order to tune the CNN model.

(a) (b)

Fig. 1: Illustration of (a) an interictal epileptiform spike, and
(b) a background waveform.

2.2. Convolutional Neural Networks

The problem of spike detection is typically ill-posed, i.e.,
there are many models which fit the training patients or spikes
well but do not generalize well. In other words, there is often
not sufficient training data to allow accurate estimation of
class probabilities throughout the input space. Convolutional
neural networks (CNNs) [19] are suitable for such scenario,

since they incorporate constraints and can achieve some de-
gree of shift and deformation invariance. The architecture of
a CNN (see Fig. 2) typically contains multiple layers: convo-
lutional layers, dense layers, and an output layer. We applied
the backpropagation algorithm to train the CNN. In this way,
we can extract both low-level and high-level features from
the input layer.

3 

5 

7 

1 

1 

1 

64 

64 

64 

1 

1 

1 

8 

8 

8 

Leaky ReLU 

150 
Leaky ReLU 

1 
Sigmoid 

Fig. 2: The architecture of a the CNN model applied.

2.2.1. Activation function

In computational networks, the activation function defines the
output of a layer given an input or a set of inputs. Nonlinear
activation functions are commonly used in neural networks
to improve the learning capacity and system robustness for
nontrivial problems. Let us denote the output of layer ` as
h` (with h0 the input layer), Θ`+1 as the weight matrix of
layer `+1, and z`+1 as the linear combination of the weighted
input to each neuron. The output of layer `+1 is computed as
follows:

z`+1 = h`Θ`+1,

h`+1 = a(z`+1). (1)

The activation function is denoted by a(z). The most com-
monly used nonlinear activation functions in neural networks
are the Logistic Sigmoid a(z) = 1/(1 + e−z) and the Hy-
perbolic Tangent a(z) = (ez − e−z)/(ez + e−z). Non-
saturating activation functions such as the Rectifier Linear
Unit (ReLU) with a(z) = max(0, z) have become more
popular for their non-vanishing gradients and computational
efficiency [15]. However, the ReLU also suffers from “dead”
gradients, i.e. from large gradients that may deactivate the
neurons, and further disable the network. In order to avoid
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such problems, we applied the Leaky ReLU [16] as our acti-
vation function in CNN, which is defined as:

a(z) = max(αz, z), (2)

with α = 0.1. “Leaky” refers to the additional slope when
a(z) < 0.

2.2.2. The convolutional architecture

In 1D Convolutional architectures, the processing steps of (1)
are modified as follows:

zid`+1 = xi`Θ
d
`+1,

hid`+1 = a(zid`+1), (3)

where the input xi` ∈ Rkc×1 represents a co-located vector of
length k in c channels and i refers to the specific co-located
vector. The weight matrix Θd

` ∈ R1×kc corresponds to a
spatial weight filter with kc connections, in the dth output
channel, between the input layer and each neuron in the out-
put layer. As a result, convolutional layers are configurable
to their filter size k and number of filters d [15], leading to
many possible configurations of the CNN architecture.

Multiple convolutional layers can help to reduce the pa-
rameter space, and to model non-linear mappings [20]. More-
over, combining different filter sizes can improve the overall
performance [18]. Therefore, in this paper, we did not only
test a single convolutional layer, but also stacked different
convolutional layers on top of each other, and tested convolu-
tional layers with different filter sizes. Based on our results,
the implementation of multiple convolutional layers with dif-
ferent filter sizes provided the best validation performance,
and thus was used to build the final CNN model.

2.2.3. The final CNN model

As depicted in Fig. 2, the CNN model contains five layers.
The first three layers are convolutional layers with different
filter sizes. The fourth layer is a fully-connected layer, which
feeds into a fifth binary logistic layer (for normalization pur-
pose) to make final decisions on whether an input waveform
is a spike or not. During the training process, the CNN net-
work is optimized by minimizing the binomial cross-entropy
on the basis of the probability output from the neural network
as:

L(x, y) = −f(x) log(y)− (1− y) log(1− f(x)), (4)

where f(x) is the prediction of the neural network given x.
After being activated by inputs, the convolutional lay-

ers are merged and passes the inputs to the neurons of the
next fully-connected layer. The output of the fully-connected
layer is then passed to the logistic output function. The leaky

ReLU nonlinear activation function is applied after each con-
volutional layer as well as the fully-connected layer. The
three convolutional layers in the CNN model contains one-
dimensional filter of size 3, 5 and 7 respectively, and a stride
of 1 with 8 filters each. The fully-connected layer has 150
hidden neurons. In order to avoid overfitting, we are using
dropouts [21] with p = 0.5 on the fully-connected layer.

The data is extremely skewed (or “imbalanced”), since
there are vastly more background waveforms than spikes.
Therefore, the CNN may mostly model the background wave-
forms, instead of the spikes. This problem is addressed by
training the CNN by means of balanced mini-batches.

Our CNN model is relatively small in size (220k param-
eters) compared to conventional CNN models for image pro-
cessing [15]. Due to the small dataset used in this study, we
limited the number of parameters in the CNN model to avoid
overfitting while keeping the model simple. For future work,
data augmentation [15], such as shifting the spikes by a few
data points, may alleviate the problem of overfitting by gen-
erating synthetic data.

2.2.4. Details of learning

Our CNN model was trained with stochastic gradient descent
using a batch-size of 4096 (2048 spikes and 2048 background
waveforms). The update rule for the weight matrix Θ involves
the Nesterov momentum [22] as follows:

vt+1 = µvt − ε∆f(Θt + µvt),

Θt+1 = Θ + vt+1, (5)

with ε > 0 the learning rate, µ ∈ [0, 1] the momentum co-
efficient, and ∆f(Θt + µvt) the gradient. In this study, the
learning rate ε was set by grid searching from 10−3 to 10−5,
where 2 10−4 gave the best convergence in the training data.
The momentum applied was set to µ = 0.9 and not optimized
further on.

The CNN network was trained for a maximum of 50
epochs. The training was stopped when the validation er-
ror and training error diverged from one another. Leave-
one-patient-out crosstesting was carried out to test the CNN
model. The training was performed on a Tesla K40 GPU. We
applied the Python built Theano library [23, 24] to compile to
CUDA (a GPU interpretable language). We made use of the
Lasagne library [25] to build and configure our CNN model.

3. RESULTS

We carried out a benchmark experiment to compare CNN
against a variety of classifiers such as Suppport Vector
Machines (SVM) with Gaussian kernel [26], Random For-
est (RF) [27], k-Nearest Neighbor (KNN) [28], and C4.5
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Decision Tree (DT) [29]. The receiver operating characteris-
tic (ROC) curve was computed for each model, and the area
under the ROC curve (AUC) was calculated as benchmark
criterion. The larger the AUC, the better the performance.
The AUC values are listed in Table 1.

Models AUC
CNN 0.947
SVM 0.912
RF 0.883
KNN 0.835
DT 0.817

Table 1: AUC for the CNN model and standard classifiers.

Our numerical results show that the CNN achieves the
largest AUC of 0.947, which outperforms the other four clas-
sifiers. As illustrated in Fig. 3, the ROC curves show that
the CNN has favorable specificity and sensitivity compared
to the other classifiers. However, due to the small dataset of
only 5 patients, AUC scores varied a lot among different pa-
tients. Investigation with a much larger dataset is necessary to
further explore the capabilities of CNNs in detecting epilepti-
form spikes from EEG signals.

Fig. 3: ROC curves for various statistical models.

4. CONCLUSION

In this paper, we develop a CNN model for detecting spikes
in the EEG of epileptic patients. Our numerical results for a
small pool of 5 patients show that the CNN performs better
than four standard classifiers. The CNN model was relatively
small compared to previous contributions in the field of con-
volutional neural networks, since we limited the number of
parameters in order to avoid overfitting. In future work, we
will consider datasets of hundreds of epilepsy patients, and
will train larger CNN models. Large-scale CNN models may
yield even better detection results.
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