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ABSTRACT

Epilepsy is often associated with the presence of spikes in
electroencephalograms (EEGs). The spike waveforms vary
vastly among epilepsy patients, and also for the same patient
across time. In order to develop semi-automated and auto-
mated methods for detecting spikes, it is crucial to obtain a
better understanding of the various spike shapes. In this pa-
per, we develop several approaches to extract exemplars of
spikes. We generate spike exemplars by applying cluster-
ing algorithms to a database of spikes from 12 patients. As
similarity measures for clustering, we consider the Euclidean
distance and Dynamic Time Warping (DTW). We assess two
clustering algorithms, namely, K-means clustering and affin-
ity propagation. The clustering methods are compared based
on the mean squared error, and the similarity measures are as-
sessed based on the number of generated spike clusters. Affin-
ity propagation with DTW is shown to be the best combina-
tion for clustering epileptic spikes, since it generates fewer
spike templates and does not require to pre-specify the num-
ber of spike templates.

Index Terms— Epilepsy, Electroencephalogram, Affin-
ity propagation, K-means, Dynamic time warping, Euclidean
distance

1. INTRODUCTION

Epilepsy refers to a group of chronic brain disorders, which
can be characterized by unprovoked seizures. It affects 50
million people worldwide as reported in 2004 [1]. The spikes
in the electroencephalogram (EEG) are the biomarkers for
epilepsy [2]. Diagnosis based on spike detection is a tedious
task as experts have to monitor the EEG recordings of patients
continuously for hours or even days. The spike patterns show
a large variation in morphology between patients.

Template matching [3] is one of the common methods
in automated spike detection. Due to time constraints and
the need for high accuracy, it is crucial to select suitable
spike templates. Clustering spikes [4] based on morpho-
logical characteristics and selecting templates will help in
building a template library. In this paper, we explore two

clustering algorithms, viz., K-means clustering [5] and affin-
ity propagation [6], for extracting exemplars of spikes from
a large database. We consider two different similarity mea-
sures: the Euclidean distance and Dynamic Time Warping
(DTW) [7]. DTW is a robust method for calculating the sim-
ilarity between temporal sequences. DTW has been applied
for face detection [8], template matching [9], clustering [10]
and many other applications. DTW has also been shown to
improve the performance of various clustering methods such
as K-means clustering, hierarchical clustering, and fuzzy
clustering [11–13]. Affinity propagation is an efficient clus-
tering technique which has a wide range of applications such
as traffic network analysis, audio pattern recognition, gene
pattern detection, etc. [6]. In this paper, we extract spike
templates by applying clustering algorithms. From our nu-
merical experiments, we observe that the combination of
affinity propagation and DTW is highly adequate for identi-
fying spike templates. These templates can in turn be used
in semi-automated and automated spike detection systems.
A proper choice of spike templates may lead to faster and
more accurate spike detection, and ultimately, more reliable
diagnosis of epilepsy.

In Section 2, we elaborate on the EEG data analyzed in
this paper, and review the K-means and affinity propagation
(AP) clustering methods, in addition to the Euclidean dis-
tance (ED) measure and Dynamic Time Warping (DTW). In
Section 3, we discuss our results for extracting spike exem-
plars, obtained by combining different clustering algorithms
(K-means and AP) and different similarity measures (ED and
DTW). In Section 4 we conclude the paper with ideas for fu-
ture work.

2. METHODS

2.1. EEG Data

We analyzed an EEG dataset recorded at the Massachusetts
General Hospital in Boston, consisting of 30-minute scalp
EEG recordings of 12 epileptic patients. The data was
recorded according to the international 10-20 electrode sys-
tem, where the Common Average Reference (CAR) montage
was applied. The EEG data was sampled at 128 Hz and an
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IIR notch filter centered at 60 Hz was applied to remove the
powerline noise. A high-pass filter at 1 Hz was applied for
removing baseline variations. Epileptic spikes were anno-
tated by two neurologists independently. We consider here
only those waveforms that were labelled as spikes by both
neurologists. In total, 9240 spikes were extracted, each with
a length of 500 milliseconds (equivalently, 64 samples).

2.2. Clustering

Two clustering methods were applied to the set of epilep-
tic spikes: K-means clustering [5] and affinity propaga-
tion [6]. K-means clustering is one of the simplest clus-
tering algorithms in which the data points are grouped into
a specified number of clusters with an objective of reducing
the squared error between the data points and cluster cen-
ters [5]. The number of clusters is specified apriori. Let
x = (x1, x2, · · · , xn) be a set of n observations, which is to
be clustered into k ( with k ≤ n) sets S = (S1, S2, · · · , Sk).
The algorithm aims to minimize the objective function:

J =

k∑
i=1

n∑
j=1

||xj − Ci||2, (1)

where Ci is the cluster center and ||xj − Ci||2 is the distance
between the data point xj and Ci. The cluster center Ci is
determined as the mean of the points in set Si. Initially a set
of cluster centers is chosen randomly, and then it is updated
repeatedly till convergence. Data points are grouped together
by minimizing the squared error. The algorithm is terminated
after the squared error is below a specific threshold. The main
drawback of the algorithm is the need for pre-specifying the
number of clusters. In many applications, including the clus-
tering of spikes, the natural number of clusters is unknown
apriori. Moreover, oscillations can occur, therefore, properly
choosing the initial set of cluster centers is a challenge.

Affinity propagation is a clustering method where data
points are grouped by passing real valued messages between
the data points [6]. The main advantage of the algorithm
is that it is able to automatically determine the number of
clusters and the exemplars. The latter are representative data
points of each cluster. Two messages are exchanged between
the data points, namely responsibility and availability. Re-
sponsibility r(i, k) is sent from the data point i to the poten-
tial exemplar point k. This message states how well suited the
point k is to serve as the exemplar for the data point i, taking
into consideration all the other potential points. Availability
a(i, k) is sent from an exemplar k to the data point i. This
message states how appropriate it is for the data point to join
the cluster represented by the particular exemplar [6]. The in-
put to the algorithm is the similarity values between the data
points and the initial preference of the exemplars. At first the
availabilities are initialized to zero and the responsibilities are
updated as:

r(i, k) ← s(i, k) − max
k′s.t. k′ 6=k

{
a(i, k′) + s(i, k′)

}
. (2)

In the first iteration, the responsibilities are initialized as
the input similarities. Next, self-responsibility r(k, k) is com-
puted. The higher the value of self-responsibility, the higher
will be the likelihood to be chosen as an exemplar. Next the
availabilities are updated as:

a(i, k)← min
{

0, r(k, k) +
∑

i′s.t.i′ /∈{i,k}

max{0, r(i′, k)}
}
. (3)

Self-availability a(k, k), which reflects to what extent a
point k is an exemplar, is updated as:

a(k, k) ←
∑

i′s.t. i′ 6=K

max
{

0, r(i′, k)
}
. (4)

The algorithm iteratively updates the values of responsibil-
ity and availability. The number of clusters is determined by
the value of self-responsibility. At any iteration, the values of
availabilities and responsibilities combined identify the exem-
plars. For a point i, the value of k which maximizes a(i, k) +
r(i, k) indicates the exemplar for i. If k = i, point i is an ex-
emplar itself. The algorithm is terminated after a fixed num-
ber of iterations or until the cluster decisions stays unchanged
for a certain number of iterations. To prevent oscillations, a
damping factor is also introduced. Each new update is set to λ
times the previous value and 1-λ times the new value, where
λ takes values between 0 and 1 [6].

For clustering analysis using affinity propagation, the
damping factor is set to 0.5. As the initial preference for the
exemplars is unknown, it was set to the median value of the
similarity measures.

2.3. Similarity Measures

To find the similarity between two spikes, we apply the Eu-
clidean distance (ED) and Dynamic Time Warping (DTW).
The Euclidean distance d between s1 = (u1, u2, · · · , un) and
s2 = (v1, v2, · · · , vn) is defined as (see Fig. 1):

d(s1, s2) =
√

(u1 − v1)2 + (u2 − v2)2 + · · · (un − vn)2.
(5)

Fig. 1: The linear mapping between points of the two se-
quences for computing ED.
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DTW is a non-linear distance measure that calculates the
smallest distance between two signals (see Fig. 2) [7]. First
the optimal matching of points between the two signals is de-
termined and the distance between them is calculated. Specif-
ically, the DTW distance between s1 = (u1, u2, · · · , un) and
s2 = (v1, v2, · · · , vn) is calculated as follows. First an n-by-
n matrix is created with entries (i, j) equal to (ui− vj)2. The
Sakoe-Chiba Band [14] is applied to limit the warping win-
dow size. Next all the possible cumulative distances between
the two sequences are found for every possible path, and the
minimal one is chosen as the DTW distance (see Fig. 3):

DTW(s1, s2) = min
w∈P

√√√√ K∑
k=1

dwk
, (6)

where P is the set of all possible warping paths, wk is the
position (i, j) at the kth observation of a warping path, and
K is the length of the warping path [7]. The Sakoe-Chiba
band is set to 0.1.

Fig. 2: The non-linear mapping in DTW between points of
the two sequences.

Fig. 3: The n-by-n matrix for computing the optimal path
(blue) in DTW. The Sakoe-Chiba band is marked in pur-
ple [7].

K-means clustering was carried out in two ways: First we
applied K-means clustering directly to the spike waveforms;
the 64 samples of the waveforms are the input features, and
hence the input space is 64-dimensional. Second, we applied
K-means clustering to three different features of the spike
waveforms: peak-to-peak value, width of the spike, and the
non-linear energy operator (NLEO).

(a) Peak-to-peak value. (b) Width of a spike.

Fig. 4: The spike features.

The peak-to-peak value is illustrated in Fig. 4a. The width of
the spike is obtained from the position of the three peaks [15]
as illustrated in Fig. 4b. NLEO [16] is computed as:

NLEO(x(n)) = x(n) ∗ x(n)− x(n− 1) ∗ x(n+ 1), (7)

where the delay is chosen as 1. The feature values are nor-
malized to the range 0 to 1 as follows:

ēi =
ei − Emin

Emax − Emin
, (8)

where ei is a feature value, and Emin and Emax are the min-
imum and maximum values respectively of the feature in the
dataset.

Moreover, we applied affinity propagation with two dif-
ferent similarity measures, i.e., negative of ED and negative
of DTW distance. The performance in each case is evalu-
ated based on mean squared error, which is the mean distance
between data points and the cluster centers. The results for
K-means clustering depend on the initial selection of cluster
centers. Consequently, we run the K-means clustering 100
times and compute the average error.

3. RESULTS AND DISCUSSION

The mean squared error for affinity propagation with ED and
K-means clustering is shown in Fig. 5.
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Fig. 5: Mean squared error plot for affinity propagation and
K-means clustering.
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Fig. 6: Spikes in the largest four clusters generated by affinity propagation with DTW. The exemplars are highlighted in red.

To obtain these results, we first applied affinity propaga-
tion. Next, we applied K-means clustering with the same
number K of clusters as generated by affinity propagation.
In this manner, we can make a fair comparison between the
different approaches. The error values for K-means cluster-
ing applied to spike features and to the spike waveforms are
similar. The values are significantly lower for affinity prop-
agation in comparison with K-means clustering, for all the
12 patients. From this observation, we conclude that affinity
propagation outperforms the K-means algorithm for cluster-
ing spikes. Moreover, as the number of epileptic spike tem-
plates is unknown, affinity propagation has an added advan-
tage over the K-means algorithm as it does not require the
number of clusters to be specified a priori.
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Fig. 7: The number of clusters produced by affinity propaga-
tion with DTW and ED for all the 12 patients.

Affinity propagation with DTW generates a significantly
smaller number of clusters than with ED (see Fig. 7). The
spikes of the same patient tend to be morphologically more
similar in shape. It is well known from the literature that
“within patients, interictal discharges tend to be fairly stereo-
typed” [17]. As DTW yields fewer clusters, it suggests that
this distance measure captures the morphological similarity
between spikes more effectively. Information about the 6
largest clusters is displayed in Fig. 8. The four largest clus-
ters are depicted in Fig. 6. The combination of affinity prop-

agation with DTW groups epileptic spikes most efficiently.
The resulting templates can be used in semi-automated (e.g.
spikeGUI [17]) and automated spike detection systems.
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Fig. 8: (Blue) Number of spikes in the six largest clusters
generated by affinity propagation in combination with DTW.
(Red) Number of spikes belonging to the same patient as the
exemplar.

4. CONCLUSIONS

In this paper, we have shown that affinity propagation in con-
junction with DTW is an effective approach for clustering
epileptic spikes and identifying the exemplars. In contrast to
K-means clustering, the number of clusters does not need to
be pre-specified in affinity propagation. We plan to apply the
same approach to a database of EEG recordings from hun-
dreds of epilepsy patients. The resulting exemplars will then
provide an operational definition of interictal spikes, summa-
rizing the morphology of hundreds of thousands of spikes.
These exemplars can also be utilized in semi-automated and
automated detection algorithms.

In future work, we will develop algorithms to select the
proper number of exemplars. As Fig. 7 shows, the number
of exemplars grows with the number of patients, and seems
to gradually saturate in the case of DTW. We will develop an
objective measure to select a suitable number of exemplars
for the purpose of semi-automated and automated spike de-
tection.
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