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ABSTRACT

Automated annotation of electroencephalograms (EEG) of
epileptic patients is important in diagnosis and management
of epilepsy. Epilepsy is often associated with the presence
of epileptiform transients (ET) in the EEG. To develop an
efficient ET detector, a vast amount of data is required to
train and evaluate the performance of the detector. Interictal
EEG data contains mostly background waveforms, since ETs
only occur occasionally in most patients. In order to detect
ETs in an automated fashion, it is meaningful to first try to
eliminate most background waveforms by means of simple,
fast classifiers. The remaining waveforms can in a following
step be processed by more sophisticated and computationally
demanding classification algorithms, such as deep learning
systems. In this study, we design a cascade of simple thresh-
olding steps to reject most background waveforms in inter-
ictal EEG, while maintaining most ETs. Several simple and
quick-to-compute EEG features are chosen. By thresholding
these features in consecutive steps, background waveforms
are rejected sequentially. In our numerical experiments, a
cascade of 10 steps is able to reject 98.65% of all background
segments in the dataset, while preserving 90.6% of the ETs.

Index Terms— Spike Detection; Electroencephalogram;
Interictal Discharges; Epileptiform Transients; Epilepsy

1. INTRODUCTION

Electroencephalograms (EEGs) of patients with epilepsy
might be characterized by epileptiform transients (ETs), also
called interictal discharges, occurring between seizures [1, 2].
ETs are spikes or sharp waves with pointed peaks, which can
last for 20-70 ms and 70-200 ms, respectively. The presence
of ETs in EEG is often associated with epilepsy, therefore,
ETs are instrumental in the diagnosis of epilepsy. Tradition-
ally, experts detect the ETs from EEG recordings by visual
inspection, which is very time consuming. Moreover, there is
substantial disagreement between experts in EEG interpreta-
tion. Consequently, automated ET detection is sorely needed,
and will increase the uniformity in EEG interpretation of
epileptic patients [2].
Several methods have been applied for automated ET de-

tection, including template matching, parametric methods,
mimetic analysis, power spectral analysis, wavelet analysis,
and artificial neural networks [2]. In addition, several other
methods have been reported more recently [3, 4, 5, 6]. These
methods use template matching in combination with cluster-
ing [3], template matching in combination with support vector
machines (SVMs) [4], nonlinear energy operator in conjunc-
tion with mimetic analysis and Adaboost classifiers [5], and
sequence merging followed by SVMs [6]. However, the
common problem with these methods is the lack of a sizable
database of different ET profiles to validate the performance
of the ET detection systems. Therefore, the results are not
reliable for clinical purposes.
In this study, a database of routine EEG recordings from 100
epileptic patients is analyzed. In order to be able to cope
with this vast volume of data, we develop a system of simple
classifiers to eliminate most of the background waveforms
in the EEGs. After this processing step the remaining EEG
waveforms can be analyzed by more complex and power-
ful machine learning procedures. However, the latter falls
beyond the scope of this paper. Here we describe how we
designed a cascade of simple classifiers for fast rejection of
background waveforms. Since ET characteristics are of great
variety, the proposed method consists of multiple stages to
reject the background waveforms, and each stage makes use
of one specific feature. The general idea behind the proposed
method is illustrated in Fig. 1. Our numerical results show
that this cascade of thresholding steps is able to reject 98.65%
of the background waveforms in (interictal) EEG of epilepsy
patients, while preserving 90.6% of the ETs.
This paper is organized as follows. In Section 2 we de-
scribe the EEG dataset, review relevant EEG features, and
explain how we designed the cascade of thresholding steps.
In Section 3 we present our results, and in Section 4 we offer
concluding remarks.

Fig. 1: Schematic of background rejection method.

744978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



2. MATERIALS AND METHODS

2.1. Scalp EEG data
In this study, we consider 30min EEG recordings of 100
patients with epilepsy. The data was acquired at the Mas-
sachusetts General Hospital (MGH), using the international
10-20 system of electrode placement. The sampling fre-
quency is 128Hz and a notch filter at 60HZ is applied to
remove the power line interference. In addition, it has been
high-pass filtered by cut-off frequency of 0.1 Hz to remove
the baseline. Data is cross-annotated using EEG annotation
software SpikeGUI [7] by two neurologists from MGH. There
is a total number of 19,255 ETs in the dataset.

2.2. Feature extraction
The EEG recordings are divided into segments of 0.5s, cor-
responding to 64 samples. The feature values are computed
for each of these segments. Only waveforms that are labeled
as ETs by both annotators are considered as ETs. Only the
waveforms that do not have overlap with ETs are considered
as background waveforms.Waveforms that overlap with ETs,
in the same channel or any of the neighboring channels, are
not considered as background waveforms. It is noteworthy
that there might be ETs with lower peaks in channels near to
annotated ETs. These low-amplitude ETs might be missed by
the annotators. Our approach of selecting background wave-
forms ensures that these low-amplitude ETs are not treated as
background waveforms. This is particularly important in the
training phase, where we need to determine a suitable thresh-
old for discriminating between ETs and background wave-
forms.

2.2.1. Morphological features

Morphological features include peak voltage, rising and
falling voltages and slopes, and line length. The line length
of an N -point signal x(n) is computed as [8]:

L = ΣN
i=1|(x(k − 1)− x(k))|. (1)

To compute the voltage and slope values, we first search for
the ET peak in each segment of the data. Next we compute
the neighboring troughs, and calculate the required voltages
and slopes accordingly. Fig. 2 illustrates the computation of
morphological features.

2.2.2. Nonlinear energy operator

The nonlinear energy operator (NLEO) has been shown to be
effective in ET detection [9]. NLEO for discrete time signal
x(n) is defined as:

ψk{x(n)} = x2(n)− x(n− k)x(n+ k), (2)

where k is the resolution parameter [10]. We choose k rang-
ing from 1 to 32. To extract this feature, the NLEO value is
first computed for each sample point in the EEG time series
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Fig. 2: Morphological features of an ET.

data.The NLEO for each 0.5s segment is defined as the max-
imum absolute NLEO value within that segment.

2.2.3. Wavelet transform

We apply both the continuous wavelet transform (CWT)
and the discrete wavelet transform (DWT). Multiple mother
wavelets including Symlets, Coiflets, and Daubechies fami-
lies with different degrees were tested. We chose the mother
wavelet that led to the highest background rejection rate; this
turned out to be the Daubechies 3 (DB3) mother wavelet.
In the CWT, the signal is compared with the shifted, com-
pressed and stretched forms of a mother wavelet. The CWT
of a signal f(t) using mother wavelet ψ(t) is given as:

C(u, s) =
1√
s

∫ ∞
−∞

f(t)ψ(
t− u
s

)dt, (3)

where s and u represent the scaling and translation parame-
ters, respectively. The wavelet coefficient C for ψu,s(x) de-
fines shifting and scaling of the mother wavelet:

ψu,s(t) =
1√
s
ψ(
t− u
s

). (4)

Compression or stretching is determined by the scale fac-
tor s [11]. We apply different values of the scale factor s,
ranging from 1 to 30.
In the discrete wavelet transform (DWT), the signal is decom-
posed into multiple scales. Fig. 3 shows the multiscale de-
composition of the signal x[n] obtained by DWT, where g(n)
and f(n) are high-pass and low-pass filters, respectively. The
parameter Di is the detail, whereas Ai represents the approx-
imation at the ith level [12].
In this study, the DWT is applied over 4 levels, and the detail
and approximation coefficients are calculated for all levels.
We first compute the DTW for the entire EEG recordings.
Next we extract the DTW coefficient for each 0.5s segment.
In this way, we can avoid potential distortions at the bound-
aries of the segments. The maximum absolute value of the
coefficients within each segment is defined as the feature.
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Fig. 3: Subband decomposition of discrete wavelet transform
implementation [12].

2.2.4. Features in different frequency bands

Besides extracting features for bandpass-filtered signals be-
tween 0.1 to 64 Hz, all the aforementioned features are com-
puted in 5 standard EEG bands: Delta (<4 Hz), Theta (4–
8 Hz), Alpha (8–12 Hz), Beta (12–32 Hz), Gamma (>32
Hz) [13], and their combinations. The entire EEG recordings
are bandpass-filtered. Next the features are computed for the
filtered signals, and then extracted for all 0.5 segments.

2.3. Designing the cascade
To reduce the computational load in the training phase, back-
ground waveforms are randomly sampled from the data of
each subject. The number of sampled background waveforms
is 5 times the number of ETs for each subject. For subjects
with a small number of ETs, at least 2000 background wave-
forms are extracted.
In the first step, locations of all the annotated ETs along with
the sampled backgrounds are collected. All the abovemen-
tioned features are computed for all EEG segments in the
training set.
Next the threshold is selected for each feature. To this end,
the empirical cumulative density function (CDF) of each fea-
ture is determined, both for the background waveforms and
the ETs. The threshold on the feature value is selected such
that 99% of the ETs are preserved. The percentage of re-
jected background waveforms is computed for each feature.
The features are sorted according to the rejection rate. The
feature with the highest rejection is selected for the first step
in the cascade. The same procedure is performed for the fol-
lowing stages, i.e., all the features are computed on the re-
maining data from the first stage, and the top feature which
leads to the highest background rejection rate is selected and
applied at the second step, etc. Thresholding steps are added
to the cascade accordingly, till the rejection rate stops increas-
ing significantly or till the percentage of rejected spikes falls
below a predefined value. Since 1% of ETs is lost after each
stage, we choose 10 to be the maximum number of rejection
steps, so that about 10% of the ETs are rejected.

2.4. Evaluating the performance of the cascade
After selecting the features and the corresponding thresholds
for each step, the performance of the cascade is tested on the
entire dataset. We extract waveforms by applying a sliding
window with 75% overlap. After computing a feature value
for each waveform, we apply the thresholds determined in the

training stage. A waveform that is not rejected might corre-
spond to an ET or background waveform. To distinguish both,
additional classification would need to be applied, potentially
by more complex and powerful classification methods. We
compute the background rejection rate after each step. The
performance for the entire cascade is evaluated by the final
specificity and sensitivity.

3. RESULTS AND DISCUSSION

The CDF of the most discriminative feature, applied in the
first step of the cascade, is depicted in Fig. 4, both for the ETs
and background waveforms. The vertical line indicates the
threshold θ. By rejecting waveforms whose feature values are
below θ, only 1% of the ETs will be rejected. From Fig. 4 it
can also be seen that 62.48% of the background waveforms
have feature values below θ. In summary, by rejecting wave-
forms whose feature values are below the threshold θ, 62.48%
of the background waveforms will be removed, while 99% of
the ETs are retained.
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Fig. 4: Empirical CDF plot for the most discriminative feature
(applied in the first step of the cascade), and the correspond-
ing threshold θ.

The time needed to process all 19 channels of a 5 min
EEG recording is listed in Table 1. We report the computa-
tional time for each category of features (applied separately,
i.e., not in cascade) and for the 10-step cascade. In the ini-
tial steps of the cascade, the majority of the data is rejected.
Therefore, the final steps of the cascade require less com-
putational time. As a result, the overall time for the 10-step
cascade is far less than the summation of the time needed for
each feature separately. The computations were performed on
a 2.7 GHz Intel Core i5 processor. The time is measured for
the entire process, including loading the data, preprocessing
and filtering, segmenting the data using a 75% overlapping
sliding window, feature computation, applying the threshold,
and saving the output.
In order to train the cascade, we determined the sequence of

most discriminative features and selected appropriate thresh-
olds for each of these features. Next we tested the resulting
cascade of thresholding steps on the entire EEG dataset. The
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Table 1: Processing time of each feature category, and the
total processing time for the 10-step cascade, on a 5 min EEG
data.

Feature Processing time (min)
DWT 3.64
CWT 4.85
NLEO 3.7

All Voltage & Slope values 6.62
Line Length 3.23

10-step Cascade 9.87

training and test results are listed in Table 2. In all steps,
the thresholds were selected such that 99% of the ETs were
preserved. In the testing phase, the 10-step cascade is able to
reject 98.65% of the background waveforms, while preserv-
ing 90.6% of the ETs.
The three most discriminative features happen to be extracted
from the frequency band of 4–12 Hz, which includes the
Theta and Alpha bands of EEG. Therefore, we can conclude
that features in this frequency range yield better separation
between ETs and background waveforms. Moreover, we
observed that features computed in higher frequency bands
yielded the lowest rejection rate. More precisely, in most
cases the Gamma band resulted in the lowest rejection rate
among other bands, for a particular feature.
The rejection rates after each step are shown in Fig. 5 both
for the training and test data. As expected, the rejection rates
increase after each step. However, the increase in rejection
rate becomes smaller after each consecutive step, and gradu-
ally saturates.
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Fig. 5: The overall background rejection rate versus the num-
ber of steps taken.

We limited the steps of background rejection to 10, in or-
der to retain most ETs (90.6%). From Fig. 5 it can be seen that
by selecting the most salient feature at the first step, we can
reject a high portion of background waveforms from the be-
ginning of the cascade. In the training phase, we only analyze
a small subset of the EEG of each patient, in order to limit
the computational time. For testing purposes, we consider the
entire EEG dataset of each patient. As there are many more

background waveforms in the testing phase compared to the
training phase, we expect a higher background rejection rate
at testing comparing to training. As can be seen from Fig. 5
and Table 2, the rejection rate on the test dataset is indeed
higher than on the training dataset.

Table 2: Selected features for each step of the cascade, and
the overall background rejection rate after each step.

Step Feature
Rejection (%)

(Training)
Rejection (%)

(Testing)
1 CWT (s=4, 4–12Hz) 62.48 64.47
2 Peak Voltage (4–12Hz) 77.15 78.88
3 DWT (D1, 4–12Hz) 81.97 85.84
4 NLEO (k=1, <4 Hz) 84.67 89.23
5 Rising Voltage (8–12Hz) 88.26 94.53
6 CWT (s=7, 0.1-64Hz) 90.15 97.48
7 NLEO (k=8, 0.1–64Hz) 91.13 97.9
8 DWT (A1, 0.1–64Hz) 91.69 98.2
9 CWT (s=12, 8–12Hz) 92.66 98.45
10 Rising Slope (4–8Hz) 93.26 98.65

4. CONCLUSIONS

In this paper, we proposed a method to perform fast multi-
step background rejection on (interictal) EEG of epilepsy
patients. Several features including morphological, energy,
and wavelet measures were applied. By applying thresh-
olds on these features consecutively, we formed a cascade
of thresholding steps. Using a sufficiently large dataset con-
sisting of several different subjects ensures that the cascade
can generalize quite well for new EEG recordings of different
signal to noise ratio.
We plan to extend the feature space in future work. Applying
more diverse features will help in increasing the rejection
rate at each step, by exploiting different characteristics of the
EEG. One way to increase the feature space is to consider dif-
ferent types of mother wavelets, rather than using one single
wavelet. Moreover, we plan to increase the threshold, such
that fewer ETs would be lost in each stage. By setting higher
thresholds and leveraging on more diverse EEG features, we
hope to increase the length of cascade, and achieve higher
sensitivity and specificity. In addition, applying the method
on an even larger number of subjects, will provide more reli-
able performance characteristics of this method.
With the ultimate aim of developing an efficient ET detec-
tor, we plan to further process the waveforms that remain
after background rejection, by means of more sophisticated
machine learning algorithms. Such algorithms are typically
vastly more computationally demanding. However, by fil-
tering out most background waveforms by the thresholding
cascade proposed in this paper, the overall computational
complexity of the ET detection system will remain within
reasonable limits.

747



5. REFERENCES

[1] G.E. Chatrian, L. Bergamini, M. Dondey, D.W. Klass,
M. Lennox-Buchthal, and I. Petersen, “A glossary
of terms most commonly used by clinical electroen-
cephalographers,” Electroencephalogr Clin Neurophys-
iol, vol. 37, no. 5, pp. 538–548, 1974.

[2] Jonathan J. Halford, “Computerized epileptiform tran-
sient detection in the scalp electroencephalogram: Ob-
stacles to progress and the example of computerized
{ECG} interpretation,” Clinical Neurophysiology, vol.
120, no. 11, pp. 1909 – 1915, 2009.

[3] Antoine Nonclercq, Martine Foulon, Denis Verheulpen,
Cathy De Cock, Marga Buzatu, Pierre Mathys, and
Patrick Van Bogaert, “Cluster-based spike detection al-
gorithm adapts to interpatient and intrapatient variation
in spike morphology,” Journal of Neuroscience Meth-
ods, vol. 210, no. 2, pp. 259 – 265, 2012.

[4] Shaun S. Lodder, Jessica Askamp, and Michel J.A.M.
van Putten, “Inter-ictal spike detection using a database
of smart templates,” Clinical Neurophysiology, vol. 124,
no. 12, pp. 2328 – 2335, 2013.

[5] Yung-Chun Liu, Chou-Ching K. Lin, Jing-Jane Tsai,
and Yung-Nien Sun, “Model-based spike detection of
epileptic eeg data,” Sensors, vol. 13, no. 9, pp. 12536–
12547, 2013.

[6] Jian Zhang, Junzhong Zou, Min Wang, Lanlan Chen,
Chunmei Wang, and Guisong Wang, “Automatic de-
tection of interictal epileptiform discharges based on
time-series sequence merging method,” Neurocomput-
ing, vol. 110, pp. 35 – 43, 2013.

[7] Jing Jin, Justin Dauwels, Sydney Cash, and M Bran-
don Westover, “Spikegui: Software for rapid interictal
discharge annotation via template matching and online
machine learning,” in Engineering in Medicine and Bi-
ology Society (EMBC), 2014 36th Annual International
Conference of the IEEE. IEEE, 2014, pp. 4435–4438.

[8] Rosana Esteller, Javier Echauz, T. Tcheng, Brian Litt,
and Benjamin Pless, “Line length: an efficient feature
for seizure onset detection,” in Engineering in Medicine
and Biology Society, 2001. Proceedings of the 23rd An-
nual International Conference of the IEEE. IEEE, 2001,
vol. 2, pp. 1707–1710.

[9] Sudipta Mukhopadhyay and G.C. Ray, “A new inter-
pretation of nonlinear energy operator and its efficacy in
spike detection,” Biomedical Engineering, IEEE Trans-
actions on, vol. 45, no. 2, pp. 180–187, 1998.

[10] J.H. Choi and T. Kim, “Neural action potential detector
using multi-resolution teo,” Electronics Letters, vol. 38,
no. 12, pp. 541–543, 2002.
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