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ABSTRACT

Auditory selective attention plays a central role in the human capac-
ity to reliably process complex sounds in multi-source environments.
Stimulus reconstruction has been widely used for the investigation of
selective auditory attention using multichannel electroencephalogra-
phy (EEG). In particular, the influence of attention on sound repre-
sentations in the brain has been modeled by linear time-variant fil-
ters and have been used to track the attentional state of individuals in
multi-source environments. Detection of auditory attention is of in-
terest and is important in the study of attention-related disorders and
has potential application in the hearing aid and advertising indus-
tries. In analogy with the rake receiver from wireless communica-
tions, we propose a new strategy, adapting principles from minimum
variance beamforming, to reconstruct stimuli for decoding the at-
tentional state of listeners in a competing speaker environment. We
show through experiments with real electrophysiological data how
decoding accuracies can be improved using our proposed scheme.

Index Terms— auditory, attention, BCI, EEG

1. INTRODUCTION

Non-invasive studies of the brain and brain-computer interfaces
(BCI) have typically depended upon electrophysiology. Unfortu-
nately, these electrophysiological methods have often suffered from
low signal levels and, thus, low signal-to-noise ratios. Repetition of
stimuli for averaging of responses, and many other more sophisti-
cated techniques, such as independent component analysis (e.g. [1])
and inverse channel estimation (e.g. [2]), are allowing electrophys-
iology, such as for electroencephalograms (EEGs), to become more
meaningful measures of activity within the brain.

There are two main reasons that modern data communications
are reliable, in spite of shockingly low signal-to-noise ratios: 1)
Spatial diversity and 2) temporal diversity. Diversity means mul-
tiple elements of a signal or its response is spread out over space or
time, respectively. Our paper does not claim innovation in spatial
diversity in electrophysiology, since spatial diversity processing has
already reached a relatively mature stage via processing of channels
from multiple electrodes. These spatial approaches have been de-
ployed and successfully used by the research community (e.g. [3]).
The results here instead focus on the integration of both spatial and
temporal diversity, which we will show has potential for much more
utilization for some key tasks in non-invasive brain interfaces when
modeled appropriately, such as detecting a person’s state of atten-
tion.

This work was funded by ARO grant numbers W911NF-12-1-02770 and
W911NF-15-1-0450, as well as the Office of Naval Research Young Investi-
gator Program award N00014-15-1-2124.

In particular our initial results show that modeling a persons at-
tended and unattended temporal EEG responses to dichotic auditory
stimuli (i.e. a cocktail party scenario) greatly magnifies electrophys-
iological evidence of the unattended stimuli, providing a potential
complementary method to advance BCI. Our primary goal is to vali-
date the benefit of modeling temporal EEG responses via reconstruc-
tion of both attended and unattended speech tokens and passages.
This joint use of attended and unattended spatio-temporal diversity
for electrophysiological signals provides a new view and tool for the
brain science community. Note that the details of this temporal diver-
sity are related to the patterned dynamics of evoked brain responses,
and that spatial diversity is related to EEG electrode positions on
the scalp. We do not argue against the importance of the structure
of the spatio-temporal dynamics of evoked responses and the past
excellent progress in this area. We instead propose to sidestep these
patterns to mine a successful concept from modern data communica-
tions, the rake receiver, to improve the relative detection of attention,
especially, as shown by experiments in this paper, by increasing sen-
sitivity to the lack of attention.

1.1. Spatio-Temporal Diversity and the Rake Receiver

Modern data communications techniques such as the rake receiver
can advantageously use this dispersion to achieve large signal-to-
noise gains by appropriately processing temporal diversity, and even
larger gains when combined with spatial structure. The rake re-
ceiver estimates the channel, and all their multipath reflection de-
lays and gains. Instead of inverting the channel to estimate an im-
pulse response, as is more conventionally done in electrophysiol-
ogy (e.g. [4]), this rake approach then aligns the multipath compo-
nents, phase matching those that differ by delays and weighting by
positive or negative values. These delay and gain matched signals
are then added constructively, allowing the multipath to combine to
greatly increase the received signal-to-noise ratio and reduce esti-
mation variance. Ill-posed and ill-conditioned inverse systems are
avoided. With some typical channel assumptions and models, signal
level gains of 1-3 orders of magnitude are possible when the num-
ber of aligned and added reflections is increased from 0 to 6. (For
example, see figure 7 in [5].) To illustrate the temporal element of
its function, a low complexity rake receiver use in signal shortening
(illustration from [6]) is shown in Figure 1.

The main role of the system in Figure 1 is to take the temporally
dispersed evoked response from a single small level input, apply ap-
propriate weights, align in time, and then constructively sum it to
form a larger output level, resulting in a larger output signal-to-noise
ratio. The weights for each receiver are optimized using both chan-
nel estimations as well as the spatial structure between receivers to
provide minimum variance reconstruction of the transmission.
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Fig. 1. A simplified picture of a 3-finger rake receiver with its natu-
rally time-spread input and compacted output. The weights and time
delays are chosen to maximize the constructive addition so the re-
sponse is as short duration, with the highest amplitude signal level
and lowest estimation variance, as possible.

2. APPLICATION TO SINGLE-TRIAL AUDITORY
ATTENTION

Humans possess an outstanding capability to segregate within most
classes of multiple simultaneous complex sounds through an act of
focusing their attention on a specific source of a sound or spoken
words known as selective attention. While the underlying neural pro-
cesses behind selective attention is not fully known, recent studies
suggest that the encoding of auditory objects in the brain while lis-
tening to competing speakers is affected by attention. Previous stud-
ies show that low-frequency (2 to 8 Hz) cortical activity recorded
are linearly related to an 8 Hz low-pass temporal envelope of speech
[7]. It has been demonstrated that in dichotic listening (one source
to the left ear, another to the right), cortical encoding of an attended
speech envelope is substantially stronger than to an unattended en-
velope [8]. This contrast has been used as a criterion to characterize
listener’s attention in environments with multiple speakers simulta-
neously talking using single repetition EEG [9, 10] recordings. For
instance, in [9] it is possible to ascertain which of two speech sources
is focused on (“attended”) based on similarity between a reconstruc-
tion of the attended stimulus envelope from neural recordings and
the envelope of each of the two speech waveforms over long peri-
ods (60 seconds). The parameters of reconstruction filters in this
previous method are tuned for the attended signal via a minimum
mean squared error (MMSE) criteria. This approach does not re-
quire knowledge of forward transformation of attended and unat-
tended waveforms in the brain. These transforms are often modeled
via linear temporal response functions (TRF), and can be estimated
before a typical experiment, which is to record when the listener is
confirmed to be attending to or not attending to the input sound stim-
uli. By utilizing different optimality criteria, other techniques can be
used as an alternative to this standard MMSE method so that we can
leverage our knowledge about the TRFs for attended and unattended
sounds and the difference between them.

In this paper, we instead use a Capon minimum variance dis-
tortionless response (MVDR) beamforming method, similar to the
beamformers discussed in [11, 12], to build reconstruction filters for
both attended and unattended signals separately. The MVDR beam-
former minimizes the total energy of the reconstructed signal while
simultaneously keeping the total gain of the channel for the desired
signal fixed. Because the gain on the signal is fixed, any reduction
in the output energy is obtained by suppressing undesired signal and
noise. Similar to [9], we use a similarity measure based on correla-
tion between the reconstructed signals and the true speech envelopes

to decode attentional state of the listener.

3. STIMULUS RECONSTRUCTION MODELS

We denote all matrices as bold uppercase letters, for example A,
and all vectors as bold lowercase italic letters, for example x. The
Hermitian transpose of a matrix or vector is denoted by (·)H and
transpose of a matrix or vector is denoted by (·)>.

A subject is presented with two simultaneous speech waveforms
in which one is attended to while the other is not attended to. We
denote the 8 Hz low-pass temporal envelopes of these waveforms
as sa(t) and su(t) at discrete times t = 0, ..., T , respectively. The
EEG observed in response to these waveforms is denoted as rn(t)
for a set of n = 1, ..., N electrodes. The underlying assumption
for both the forthcoming stimulus reconstruction models assume a
linear relationship between the EEG response and stimuli, i.e.:

rn(t) =
∑
τ

[an(τ)sa(t− τ) + un(τ)su(t− τ)] + vn(t) (1)

where an(τ) and un(τ) are the attended and unattended temporal re-
sponse functions, respectively, and vn(t) is assumed additive noise.

3.1. Minimum Mean Squared Error Reconstruction

The method commonly used in the field for stimulus-reconstruction
is centered on finding the filter gMMSE which minimizes the mean-
squared error between the reconstructed stimulus ŝ(t) and the true
stimulus s(t). This method is known as minimum mean squared er-
ror (MMSE) reconstruction, or more commonly, normalized reverse
correlation [13, 14]. Details are discussed in [9], where the recon-
struction filter is determined by the auto-correlation of EEG data
across all time-lags and channels, denoted by R in the study, and
the cross-correlation between R and the stimulus s, i.e. gMMSE =
(RR>)−1Rs>.

As each reconstruction filter represents a multivariate impulse
response function, filter parameters estimated from numerous train-
ing trials can be combined by simply averaging filters together. For
training and validation of the model, leave-one-out cross-validation
is used. That is, for each test trial, the filter gMMSE is obtained using
the averaged parameters of the filters learned on every other trial.
Stimulus reconstruction is performed by evaluating ŝ = g>MMSER.
For each trial we develop two reconstruction filters, ga-MMSE and
gu-MMSE, for estimating both the attended and unattended stimulus
envelopes, respectively.

3.2. The Rake Reconstruction Filter

One drawback of using the above MMSE reconstruction is that the
interference and noise of the system are not directly modeled, but
are instead minimized using MMSE criterion on the target stim-
uli. Our proposed reconstruction method takes advantage of these
extra conditions by adapting a spatio-temporal beamforming strat-
egy, recently used in [11, 12] for acoustic signals, which aims to
explicitly minimize the noise and interference in the reconstruction,
while maintaining unity gain reconstruction of the target stimuli. To
achieve this, we estimate parameters of a minimum variance distor-
tionless response (MVDR) rake reconstruction filter. These parame-
ters are estimated using a leave-one-out cross-validation procedure,
with the same goal of obtaining two reconstruction filters, ga-MVDR

and gu-MVDR.
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3.2.1. Estimating the temporal response function

Temporal response functions (TRFs) for both the attended and unat-
tended states are estimated offline using neural data recorded in a
competing-speaker environment with both the attended and unat-
tended streams available. Using vector/matrix notation from (1), the
attended TRF, an, for each EEG channel can be obtained using ridge
regression:

an = (S>a Sa + γnI)−1S>a rn (2)

where Sa denotes a Toeplitz convolution matrix of the attended stim-
ulus envelope, and I denotes identity. A k-fold cross-validation pro-
cedure (k = 5) was conducted to find the optimum values for the
regularization parameters, γn, for each EEG channel. The unat-
tended TRFs, un, are found using this same procedure, where the
neural data is fit to the unattended stimulus envelope and its time-
lags, Su.

3.2.2. Minimum variance distortionless response rake filter

The reconstruction filter we propose closely relates to the classic
Capon beamformer [15] and the time-domain beamforming methods
discussed in [11]. We derive the minimum variance distortionless
response (MVDR) rake reconstruction filter assuming the following
linear model:

rn = Ansa + Unsu + vn (3)

where

sa = [sa(t), sa(t− 1), . . . , sa(t− 2τmax)]
>

su = [su(t), su(t− 1), . . . , su(t− 2τmax)]
>

rn = [rn(t), rn(t− 1), . . . , rn(t− τmax + 1)]>

vn = [vn(t), vn(t− 1), . . . , vn(t− τmax + 1)]>

(4)

and An and Un represent Toeplitz convolution matrices of the at-
tended and unattended TRFs, respectively. Because each trial repre-
sents a unique story and neural response, concatenating training set
trials together (such that the data in (4) is all-inclusive) yields an im-
proved one-for-all reconstruction filter which is much less arbitrary
than averaging filters obtained by each trial individually, as shown
with MMSE reconstruction in [16].

By stacking all vectors and matrices of (3), indexed by n, and
dropping the index, we obtain its compact model:

r = Asa + Usu + v (5)

where
r = [r>1 , r

>
2 , . . . , r

>
N ]>

v = [v>1 ,v
>
2 , . . . ,v

>
N ]>

A = [A>1 ,A
>
2 , . . . ,A

>
N ]>

U = [U>1 ,U
>
2 , . . . ,U

>
N ]>.

(6)

The optimization problem for the MVDR filter which reconstructs
the attended stimulus envelope is expressed as:

minimize E{|g>a (Usu + v)|2} subject to g>a A = δ>τ (7)

where δτ is a vector of zeros, except with the last element equal
to one, and E{·} denotes expected value. For computational and
notation simplicity, the interference term can be absorbed into the
noise term such that v′ = r − Asa. The objective can now be
developed into:

E{|g>a v′|2} = g>a Σvvga (8)

where Σvv is the auto-covariance matrix of the noise v′. The solu-
tion to this quadratic program is:

ga-MVDR = Σ−1
vv A(A>Σ−1

vv A)−1δτ . (9)

By redefining R using the notation of (4) and (6), for t = 0, we
obtain:

R = [r(τ), r(τ + 1), . . . , r(τ + T )] (10)

such that the output of the reconstruction filter can now be evaluated
by ŝa = g>a-MVDRR. The processing above can easily be modified to
reconstruct the unattended stimuli analogously.

3.2.3. Inverting the auto-covariance matrix

Although the covariance matrices are estimated using the complete
training set, we found the result may still be ill-conditioned. There
are numerous ways of inverting ill-conditioned matrices. In this pa-
per we explored principal-component (or eigenspace) covariance in-
version [17, Ch. 6.8]. By taking advantage of symmetry properties
inherent to covariance matrices, we can express Σvv in terms of its
eigenvalues and eigenvectors:

Σvv = QΛQH (11)

where Λ is a diagonal matrix of ordered eigenvalues and Q is a
(N · τmax)× (N · τmax) matrix of corresponding eigenvectors. The
covariance matrix is projected onto a reduced-rank subspace by re-
taining the first L largest eigenvalues, where L is a parameter tuned
on the training set. This subset of eigenvalues can similarly be rep-
resented by the matrix Λ̂, a L × L ordered diagonal matrix which
retains the L < (N · τmax) eigenvalues such that:

Σ̂vv = Q̂Λ̂Q̂H (12)

where Q̂ is a (N · τmax) × L matrix of the corresponding retained
eigenvectors. Inverting the reduced-rank covariance matrix is now
better behaved and can be performed by:

Σ̂−1
vv = Q̂Λ̂−1Q̂H . (13)

4. EXPERIMENTS AND RESULTS

We conducted a pilot study as a proof-of-concept for our proposed
method using neural data recorded from a single subject giving in-
formed consent according to the procedures approved by the Univer-
sity of Washington.

4.1. Experiment Setup and Data Acquisition

The experiment consisted of presenting two audio books simultane-
ously to the subject, one story to the left ear and the other to the
right ear. Stories were presented into the same ears throughout the
duration of recording. The experiment was segmented into 36 one-
minute trials where the subject was asked to attend to one of the
two stories throughout the entire trial. To ensure the correct passage
was attended to, the subject was required to answer multiple-choice
questions on the attended passage after each trial.

EEG data were collected using a 60-electrode EEG cap (Brain
Vision products). All EEG data were resampled offline to a sample
rate of 64 Hz. The temporal envelopes of the speech stimuli were ob-
tained using the Hilbert transform, and then downsampled to 64 Hz,
allowing us to relate their dynamics to those of the EEG. Because
envelope frequencies between 2 and 8 Hz are linearly relatable to
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Fig. 2. Average correlation coefficient between the reconstructed
stimulus envelopes and actual stimulus envelopes using conventional
MMSE reconstruction (yellow) and our proposed MVDR recon-
struction (blue). Average correlation is across all 36 test trials.

neural responses in the auditory cortex [18, 19], the EEG data were
digitally filtered offline with a band-pass filter between 2 and 8 Hz,
and the speech envelopes were low-pass filtered below 8 Hz, similar
to preprocessing of [9]. Previous research also indicates EEG activ-
ity reflects the dynamics of the speech envelope at latencies up to
250 ms [2], thus, we aimed to develop the reconstruction filters, for
both models, over the range of τ = 0 to τmax = 250 ms.

4.2. Evaluation and Results

Following the same evaluation metrics as [9], the reconstruction ac-
curacy was measured based on the correlation coefficient (Pearson’s
r) between the reconstructed stimuli envelope and the true stimuli
envelope over a 60 second test trial. The correlation coefficient
rŝa,sa denotes an attended reconstruction correlated against the true
attended envelope. The coefficient rŝu,su is defined similarly for
the unattended stimuli. We will refer to these as the “desired” cor-
relation coefficients. To get a relative measure, we also calculated
the correlation between the reconstructed envelope and the opposite
stimuli, which we will refer to as the “undesired” correlations. We
denote these as rŝa,su and rŝu,sa . Measuring all test trials provided
36 correlation coefficients for each of the 4 cases and 2 reconstruc-
tion models. Figure 2 depicts the average of these correlations.

Although difficult to make generalized conclusions due to the
small sample size of subjects, our initial results show that the pro-
posed MVDR model provides a higher correlated reconstruction
with the true stimulus, for both the attended and unattended stim-
uli, when compared to conventional MMSE reconstruction. It also
shows that by modeling the noise (and interference) in the MVDR
model, the separation between the desired and undesired corre-
lations are improved, in turn allowing for attentional decoders to
perform more efficiently. This improvement in separation between
the desired and undesired correlations is shown in Table 1.

The evaluation metric that is most desired in auditory attention
detection is the attentional decoder accuracy. Similar to [9], we use
the sign of the difference between the desired and undesired cor-
relations for a particular test trial to determine if the attended and
unattended passages were detected correctly. That is, for each test
trial, where both the MMSE and MVDR models were trained using
all other trials, if rŝa,sa > rŝa,su then the attended passage was
detected correctly. Similarly, the unattended passage was detected
correctly if rŝu,su > rŝu,sa . It is easy to see the importance be-

Conventional Proposed

MMSE MVDR

E{rŝa,sa − rŝa,su}
E{rŝu,su − rŝu,sa}

0.0181

0.0062

0.0192
0.0165

Table 1. Difference between desired and undesired correlation co-
efficients for both attended and unattended stimuli envelope recon-
structions. Average correlation is across all 36 test trials.

Conventional Proposed

MMSE MVDR

Attended Decoder

Unattended Decoder

86.1%
58.3%

86.1%
80.6%

Table 2. Single-trial attentional decoding accuracy. Chance is 50%.

tween the separation of the desired and undesired correlations and
how it relates to attentional state decoding accuracy. The decoding
results for all 36 trials is shown in Table 2.

As expected from the correlation separation shown in Table 1,
both MMSE and MVDR reconstruction models have similar de-
tection accuracy for the attended audio passage, but our proposed
MVDR model greatly outperforms MMSE for unattended audio pas-
sage detection. We hypothesize this imbalance in performance is
due to the channel response shortening property of the MVDR filter,
introducing less estimation variance than results from the deconvo-
lution inherent in the MMSE approach. That increased variance is
potentially much more problematic for the weaker unattended de-
coders.

5. CONCLUSIONS

Based on concepts from communication’s ubiquitous rake receiver,
we propose an auditory stimulus envelope reconstruction method
to be used on single-trial EEG recordings obtained in response to
a competing talker environment. Our method was inspired from
the classic MVDR beamformer so that not only a desired target is
modeled and reconstructed, but any system interference and noise
is modeled and directly minimized. Although results are based us-
ing only a single subject, we show that both the reconstruction accu-
racy and auditory attention decoding accuracy of our model performs
comparable to the traditional MMSE reconstruction for an attended
stimuli, but outperforms MMSE when evaluating the reconstruction
of the unattended stimuli.

Future directions for investigation start with evaluation on more
subjects. There is also an opportunity to explore the performance
of different stimulus envelope representations, for example [16]
has shown that by using sub-band envelope extraction with proper
power-law compression, as opposed to the standard broadband
Hilbert envelope, reconstruction models may yield even better per-
formance in decoding accuracy. Another area of interest is the
investigation of other maximal correlation reconstruction models,
such as multivariate linear regression and canonical correlation
analysis.
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